These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 28268862)

  • 21. Energy Expenditure Prediction Using Raw Accelerometer Data in Simulated Free Living.
    Montoye AH; Mudd LM; Biswas S; Pfeiffer KA
    Med Sci Sports Exerc; 2015 Aug; 47(8):1735-46. PubMed ID: 25494392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data.
    Montoye AHK; Begum M; Henning Z; Pfeiffer KA
    Physiol Meas; 2017 Feb; 38(2):343-357. PubMed ID: 28107205
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Classification accuracy of the wrist-worn gravity estimator of normal everyday activity accelerometer.
    Welch WA; Bassett DR; Thompson DL; Freedson PS; Staudenmayer JW; John D; Steeves JA; Conger SA; Ceaser T; Howe CA; Sasaki JE; Fitzhugh EC
    Med Sci Sports Exerc; 2013 Oct; 45(10):2012-9. PubMed ID: 23584403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accurate prediction of energy expenditure using a shoe-based activity monitor.
    Sazonova N; Browning RC; Sazonov E
    Med Sci Sports Exerc; 2011 Jul; 43(7):1312-21. PubMed ID: 21131868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative evaluation of features and techniques for identifying activity type and estimating energy cost from accelerometer data.
    Kate RJ; Swartz AM; Welch WA; Strath SJ
    Physiol Meas; 2016 Mar; 37(3):360-79. PubMed ID: 26862679
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep CHORES: Estimating Hallmark Measures of Physical Activity Using Deep Learning.
    Mardini MT; Nerella S; Wanigatunga AA; Saldana S; Casanova R; Manini TM
    AMIA Annu Symp Proc; 2020; 2020():803-812. PubMed ID: 33936455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automatic heart rate normalization for accurate energy expenditure estimation. An analysis of activities of daily living and heart rate features.
    Altini M; Penders J; Vullers R; Amft O
    Methods Inf Med; 2014; 53(5):382-8. PubMed ID: 25245124
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Personalized cardiorespiratory fitness and energy expenditure estimation using hierarchical Bayesian models.
    Altini M; Casale P; Penders J; Amft O
    J Biomed Inform; 2015 Aug; 56():195-204. PubMed ID: 26079263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Validation of automatic wear-time detection algorithms in a free-living setting of wrist-worn and hip-worn ActiGraph GT3X.
    Knaier R; Höchsmann C; Infanger D; Hinrichs T; Schmidt-Trucksäss A
    BMC Public Health; 2019 Feb; 19(1):244. PubMed ID: 30819148
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of Indirect Calorimetry- and Accelerometry-Based Energy Expenditure During Children's Discrete Skill Performance.
    Sacko R; McIver K; Brazendale K; Pfeifer C; Brian A; Nesbitt D; Stodden DF
    Res Q Exerc Sport; 2019 Dec; 90(4):629-640. PubMed ID: 31441713
    [No Abstract]   [Full Text] [Related]  

  • 31. Wrist accelerometer shape feature derivation methods for assessing activities of daily living.
    Kheirkhahan M; Chakraborty A; Wanigatunga AA; Corbett DB; Manini TM; Ranka S
    BMC Med Inform Decis Mak; 2018 Dec; 18(Suppl 4):124. PubMed ID: 30537957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimating Energy Expenditure With Multiple Models Using Different Wearable Sensors.
    Cvetkovic B; Milic R; Lustrek M
    IEEE J Biomed Health Inform; 2016 Jul; 20(4):1081-7. PubMed ID: 25974959
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimation of energy expenditure using CSA accelerometers at hip and wrist sites.
    Swartz AM; Strath SJ; Bassett DR; O'Brien WL; King GA; Ainsworth BE
    Med Sci Sports Exerc; 2000 Sep; 32(9 Suppl):S450-6. PubMed ID: 10993414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correction of estimation bias of predictive equations of energy expenditure based on wrist/waist-mounted accelerometers.
    Ho CS; Chang CH; Lin KC; Huang CC; Hsu YJ
    PeerJ; 2019; 7():e7973. PubMed ID: 31720110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous heart rate-motion sensor technique to estimate energy expenditure.
    Strath SJ; Bassett DR; Swartz AM; Thompson DL
    Med Sci Sports Exerc; 2001 Dec; 33(12):2118-23. PubMed ID: 11740308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Validation of the Fitbit One® for physical activity measurement at an upper torso attachment site.
    Diaz KM; Krupka DJ; Chang MJ; Shaffer JA; Ma Y; Goldsmith J; Schwartz JE; Davidson KW
    BMC Res Notes; 2016 Apr; 9():213. PubMed ID: 27068022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An original piecewise model for computing energy expenditure from accelerometer and heart rate signals.
    Romero-Ugalde HM; Garnotel M; Doron M; Jallon P; Charpentier G; Franc S; Huneker E; Simon C; Bonnet S
    Physiol Meas; 2017 Jul; 38(8):1599-1615. PubMed ID: 28665293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting free-living energy expenditure using a miniaturized ear-worn sensor: an evaluation against doubly labeled water.
    Bouarfa L; Atallah L; Kwasnicki RM; Pettitt C; Frost G; Yang GZ
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):566-75. PubMed ID: 24108707
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Triaxial accelerometry for assessment of physical activity in young children.
    Tanaka C; Tanaka S; Kawahara J; Midorikawa T
    Obesity (Silver Spring); 2007 May; 15(5):1233-41. PubMed ID: 17495200
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents.
    Zakeri IF; Adolph AL; Puyau MR; Vohra FA; Butte NF
    J Appl Physiol (1985); 2010 Jan; 108(1):128-36. PubMed ID: 19892930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.