These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28268909)

  • 21. Automated determination of wakefulness and sleep in rats based on non-invasively acquired measures of movement and respiratory activity.
    Zeng T; Mott C; Mollicone D; Sanford LD
    J Neurosci Methods; 2012 Mar; 204(2):276-87. PubMed ID: 22178621
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sleep/wake detection based on cardiorespiratory signals and actigraphy.
    Devot S; Dratwa R; Naujokat E
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5089-92. PubMed ID: 21096033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extracting fuzzy rules from polysomnographic recordings for infant sleep classification.
    Held CM; Heiss JE; Estévez PA; Perez CA; Garrido M; Algarín C; Peirano P
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):1954-62. PubMed ID: 17019859
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated sleep stage classification based on tracheal body sound and actigraphy.
    Kalkbrenner C; Brucher R; Kesztyüs T; Eichenlaub M; Rottbauer W; Scharnbeck D
    Ger Med Sci; 2019; 17():Doc02. PubMed ID: 30996721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Radar-based sleep stage classification in children undergoing polysomnography: a pilot-study.
    de Goederen R; Pu S; Silos Viu M; Doan D; Overeem S; Serdijn WA; Joosten KFM; Long X; Dudink J
    Sleep Med; 2021 Jun; 82():1-8. PubMed ID: 33866298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Respiratory and body movements as indicators of sleep stage and wakefulness in infants and young children.
    Kirjavainen T; Cooper D; Polo O; Sullivan CE
    J Sleep Res; 1996 Sep; 5(3):186-94. PubMed ID: 8956209
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of apneic events from single channel nasal airflow using 2nd derivative method.
    Han J; Shin HB; Jeong DU; Park KS
    Comput Methods Programs Biomed; 2008 Sep; 91(3):199-207. PubMed ID: 18571281
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Validation of Photoplethysmography-Based Sleep Staging Compared With Polysomnography in Healthy Middle-Aged Adults.
    Fonseca P; Weysen T; Goelema MS; Møst EIS; Radha M; Lunsingh Scheurleer C; van den Heuvel L; Aarts RM
    Sleep; 2017 Jul; 40(7):. PubMed ID: 28838130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unsupervised Estimation of Mouse Sleep Scores and Dynamics Using a Graphical Model of Electrophysiological Measurements.
    Yaghouby F; O'Hara BF; Sunderam S
    Int J Neural Syst; 2016 Jun; 26(4):1650017. PubMed ID: 27121993
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of REM sleep behaviour disorder by automated polysomnography analysis.
    Cooray N; Andreotti F; Lo C; Symmonds M; Hu MTM; De Vos M
    Clin Neurophysiol; 2019 Apr; 130(4):505-514. PubMed ID: 30772763
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A New Fully Automated Random-Forest Algorithm for Sleep Staging.
    Klok AB; Edin J; Cesari M; Olesen AN; Jennum P; Sorensen HBD
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4920-4923. PubMed ID: 30441446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Processing of signals recorded through smart devices: sleep-quality assessment.
    Bianchi AM; Mendez MO; Cerutti S
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):741-7. PubMed ID: 20423809
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A decision support system for automatic sleep staging from EEG signals using tunable Q-factor wavelet transform and spectral features.
    Hassan AR; Bhuiyan MI
    J Neurosci Methods; 2016 Sep; 271():107-18. PubMed ID: 27456762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and validation of a computer-based sleep-scoring algorithm.
    Louis RP; Lee J; Stephenson R
    J Neurosci Methods; 2004 Feb; 133(1-2):71-80. PubMed ID: 14757347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An E-health solution for automatic sleep classification according to Rechtschaffen and Kales: validation study of the Somnolyzer 24 x 7 utilizing the Siesta database.
    Anderer P; Gruber G; Parapatics S; Woertz M; Miazhynskaia T; Klosch G; Saletu B; Zeitlhofer J; Barbanoj MJ; Danker-Hopfe H; Himanen SL; Kemp B; Penzel T; Grozinger M; Kunz D; Rappelsberger P; Schlogl A; Dorffner G
    Neuropsychobiology; 2005; 51(3):115-33. PubMed ID: 15838184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis and automatic identification of sleep stages using higher order spectra.
    Acharya UR; Chua EC; Chua KC; Min LC; Tamura T
    Int J Neural Syst; 2010 Dec; 20(6):509-21. PubMed ID: 21117273
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wakefulness evaluation during sleep for healthy subjects and OSA patients using a patch-type device.
    Yoon H; Hwang SH; Choi SH; Choi JW; Lee YJ; Jeong DU; Park KS
    Comput Methods Programs Biomed; 2018 Mar; 155():127-138. PubMed ID: 29512493
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hypnogram and sleep parameter computation from activity and cardiovascular data.
    Domingues A; Paiva T; Sanches JM
    IEEE Trans Biomed Eng; 2014 Jun; 61(6):1711-9. PubMed ID: 24845281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differentiating between light and deep sleep stages using an ambulatory device based on peripheral arterial tonometry.
    Bresler M; Sheffy K; Pillar G; Preiszler M; Herscovici S
    Physiol Meas; 2008 May; 29(5):571-84. PubMed ID: 18460762
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimation of Sleep Stages Analyzing Respiratory and Movement Signals.
    Gaiduk M; Perea JJ; Seepold R; Martinez Madrid N; Penzel T; Glos M; Ortega JA
    IEEE J Biomed Health Inform; 2022 Feb; 26(2):505-514. PubMed ID: 34310330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.