These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 28269045)
21. A low-complexity algorithm for detection of atrial fibrillation using an ECG. Sadr N; Jayawardhana M; Pham TT; Tang R; Balaei AT; de Chazal P Physiol Meas; 2018 Jun; 39(6):064003. PubMed ID: 29791322 [TBL] [Abstract][Full Text] [Related]
22. Accurate detection of atrial fibrillation from 12-lead ECG using deep neural network. Cai W; Chen Y; Guo J; Han B; Shi Y; Ji L; Wang J; Zhang G; Luo J Comput Biol Med; 2020 Jan; 116():103378. PubMed ID: 31778896 [TBL] [Abstract][Full Text] [Related]
23. Novel Density Poincaré Plot Based Machine Learning Method to Detect Atrial Fibrillation From Premature Atrial/Ventricular Contractions. Bashar SK; Han D; Zieneddin F; Ding E; Fitzgibbons TP; Walkey AJ; McManus DD; Javidi B; Chon KH IEEE Trans Biomed Eng; 2021 Feb; 68(2):448-460. PubMed ID: 32746035 [TBL] [Abstract][Full Text] [Related]
24. Deep Learning Approaches to Detect Atrial Fibrillation Using Photoplethysmographic Signals: Algorithms Development Study. Kwon S; Hong J; Choi EK; Lee E; Hostallero DE; Kang WJ; Lee B; Jeong ER; Koo BK; Oh S; Yi Y JMIR Mhealth Uhealth; 2019 Jun; 7(6):e12770. PubMed ID: 31199302 [TBL] [Abstract][Full Text] [Related]
25. Adapting detection sensitivity based on evidence of irregular sinus arrhythmia to improve atrial fibrillation detection in insertable cardiac monitors. Pürerfellner H; Sanders P; Sarkar S; Reisfeld E; Reiland J; Koehler J; Pokushalov E; Urban L; Dekker LRC Europace; 2018 Nov; 20(FI_3):f321-f328. PubMed ID: 29036652 [TBL] [Abstract][Full Text] [Related]
26. Application of the relative wavelet energy to heart rate independent detection of atrial fibrillation. García M; Ródenas J; Alcaraz R; Rieta JJ Comput Methods Programs Biomed; 2016 Jul; 131():157-68. PubMed ID: 27265056 [TBL] [Abstract][Full Text] [Related]
27. Wavelet leader multifractal analysis of heart rate variability in atrial fibrillation. Gadhoumi K; Do D; Badilini F; Pelter MM; Hu X J Electrocardiol; 2018; 51(6S):S83-S87. PubMed ID: 30177367 [TBL] [Abstract][Full Text] [Related]
28. Predicting termination of paroxysmal atrial fibrillation using empirical mode decomposition of the atrial activity and statistical features of the heart rate variability. Mohebbi M; Ghassemian H Med Biol Eng Comput; 2014 May; 52(5):415-27. PubMed ID: 24599701 [TBL] [Abstract][Full Text] [Related]
29. Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine. Asgari S; Mehrnia A; Moussavi M Comput Biol Med; 2015 May; 60():132-42. PubMed ID: 25817534 [TBL] [Abstract][Full Text] [Related]
30. Prediction of paroxysmal atrial fibrillation using recurrence plot-based features of the RR-interval signal. Mohebbi M; Ghassemian H Physiol Meas; 2011 Aug; 32(8):1147-62. PubMed ID: 21709338 [TBL] [Abstract][Full Text] [Related]
31. Predicting spontaneous termination of atrial fibrillation based on the RR interval. Sun RR; Wang YY Proc Inst Mech Eng H; 2009 Aug; 223(6):713-26. PubMed ID: 19743637 [TBL] [Abstract][Full Text] [Related]
32. Automated detection of atrial fibrillation using long short-term memory network with RR interval signals. Faust O; Shenfield A; Kareem M; San TR; Fujita H; Acharya UR Comput Biol Med; 2018 Nov; 102():327-335. PubMed ID: 30031535 [TBL] [Abstract][Full Text] [Related]
33. Detection of atrial fibrillation using discrete-state Markov models and Random Forests. Kalidas V; Tamil LS Comput Biol Med; 2019 Oct; 113():103386. PubMed ID: 31446318 [TBL] [Abstract][Full Text] [Related]
34. Predicting initiation and termination of atrial fibrillation from the ECG. Hayn D; Kollmann A; Schreier G Biomed Tech (Berl); 2007 Feb; 52(1):5-10. PubMed ID: 17313327 [TBL] [Abstract][Full Text] [Related]
35. Performance of handheld electrocardiogram devices to detect atrial fibrillation in a cardiology and geriatric ward setting. Desteghe L; Raymaekers Z; Lutin M; Vijgen J; Dilling-Boer D; Koopman P; Schurmans J; Vanduynhoven P; Dendale P; Heidbuchel H Europace; 2017 Jan; 19(1):29-39. PubMed ID: 26893496 [TBL] [Abstract][Full Text] [Related]
36. Multiscale sample entropy based on discrete wavelet transform for clinical heart rate variability recognition. Lee MY; Yu SN Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4299-302. PubMed ID: 23366878 [TBL] [Abstract][Full Text] [Related]
37. Differences in heart rate dynamics before the spontaneous onset of long and short episodes of paroxysmal atrial fibrillation. Vikman S; Yli-Mäyry S; Mäkikallio TH; Airaksinen KE; Huikuri HV Ann Noninvasive Electrocardiol; 2001 Apr; 6(2):134-42. PubMed ID: 11333171 [TBL] [Abstract][Full Text] [Related]
39. A Review on the State of the Art in Atrial Fibrillation Detection Enabled by Machine Learning. Rizwan A; Zoha A; Mabrouk IB; Sabbour HM; Al-Sumaiti AS; Alomainy A; Imran MA; Abbasi QH IEEE Rev Biomed Eng; 2021; 14():219-239. PubMed ID: 32112683 [TBL] [Abstract][Full Text] [Related]
40. Effect of temporal resolution on the detection of cardiac arrhythmias using HRV features and machine learning. Ben Itzhak S; Ricon SS; Biton S; Behar JA; Sobel JA Physiol Meas; 2022 Apr; 43(4):. PubMed ID: 35506573 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]