BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 28269047)

  • 1. Pulse transit time and heart rate variability in sleep staging.
    Shahrbabaki SS; Ahmed B; Penzel T; Cvetkovic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3469-3472. PubMed ID: 28269047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of Photoplethysmography-Based Sleep Staging Compared With Polysomnography in Healthy Middle-Aged Adults.
    Fonseca P; Weysen T; Goelema MS; Møst EIS; Radha M; Lunsingh Scheurleer C; van den Heuvel L; Aarts RM
    Sleep; 2017 Jul; 40(7):. PubMed ID: 28838130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoplethysmography derivatives and pulse transit time in overnight blood pressure monitoring.
    Shahrbabaki SS; Ahmed B; Penzel T; Cvetkovic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2855-2858. PubMed ID: 28268912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct application of an ECG-based sleep staging algorithm on reflective photoplethysmography data decreases performance.
    van Gilst MM; Wulterkens BM; Fonseca P; Radha M; Ross M; Moreau A; Cerny A; Anderer P; Long X; van Dijk JP; Overeem S
    BMC Res Notes; 2020 Nov; 13(1):513. PubMed ID: 33168051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between heart rate variability and pulse rate variability during different sleep stages for sleep apnea patients.
    Liu S; Teng J; Qi X; Wei S; Liu C
    Technol Health Care; 2017; 25(3):435-445. PubMed ID: 27911348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of pulse rate variability with heart rate variability during obstructive sleep apnea.
    Khandoker AH; Karmakar CK; Palaniswami M
    Med Eng Phys; 2011 Mar; 33(2):204-9. PubMed ID: 20980188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulse transit time as a surrogate measure of changes in systolic arterial pressure in children during sleep.
    Vlahandonis A; Biggs SN; Nixon GM; Davey MJ; Walter LM; Horne RS
    J Sleep Res; 2014 Aug; 23(4):406-13. PubMed ID: 24605887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sleep staging classification based on HRV: time-variant analysis.
    Mendez MO; Matteucci M; Cerutti S; Aletti F; Bianchi AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():9-12. PubMed ID: 19963449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ambient temperature effect on pulse rate variability as an alternative to heart rate variability in young adult.
    Shin H
    J Clin Monit Comput; 2016 Dec; 30(6):939-948. PubMed ID: 26511754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heart Rate Variability from Wearable Photoplethysmography Systems: Implications in Sleep Studies at High Altitude.
    Castiglioni P; Meriggi P; Di Rienzo M; Lombardi C; Parati G; Faini A
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the Potential of Pulse Transit Time as a Biomarker for Sleep Efficiency through a Comparison Analysis with Heart Rate and Heart Rate Variability.
    Bridges J; Shishavan HH; Salmon A; Metersky M; Kim I
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sleep stage prediction with raw acceleration and photoplethysmography heart rate data derived from a consumer wearable device.
    Walch O; Huang Y; Forger D; Goldstein C
    Sleep; 2019 Dec; 42(12):. PubMed ID: 31579900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of cuff inflation and deflation on pulse transit time measured from ECG and multi-wavelength PPG.
    Liu J; Li Y; Ding XR; Dai WX; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5973-6. PubMed ID: 26737652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing accuracy of pulse transit time measurements by automated elimination of distorted photoplethysmography waves.
    van Velzen MHN; Loeve AJ; Niehof SP; Mik EG
    Med Biol Eng Comput; 2017 Nov; 55(11):1989-2000. PubMed ID: 28361357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography.
    Selvaraj N; Jaryal A; Santhosh J; Deepak KK; Anand S
    J Med Eng Technol; 2008; 32(6):479-84. PubMed ID: 18663635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient noise-tolerant estimation of heart rate variability using single-channel photoplethysmography.
    Firoozabadi R; Helfenbein ED; Babaeizadeh S
    J Electrocardiol; 2017; 50(6):841-846. PubMed ID: 28918214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sleep Quality Evaluation Based on Single-Lead Wearable Cardiac Cycle Acquisition Device.
    Li Y; Li J; Yan C; Dong K; Kang Z; Zhang H; Liu C
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limitations of oximetry to measure heart rate variability measures.
    Lu G; Yang F
    Cardiovasc Eng; 2009 Sep; 9(3):119-25. PubMed ID: 19728090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of heart rate variability signal features derived from electrocardiography and photoplethysmography in healthy individuals.
    Bolanos M; Nazeran H; Haltiwanger E
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4289-94. PubMed ID: 17946618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals.
    Jeyhani V; Mahdiani S; Peltokangas M; Vehkaoja A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5952-5. PubMed ID: 26737647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.