These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28269058)

  • 21. Automatic recognition of alertness and drowsiness from EEG by an artificial neural network.
    Vuckovic A; Radivojevic V; Chen AC; Popovic D
    Med Eng Phys; 2002 Jun; 24(5):349-60. PubMed ID: 12052362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of single-channel electroencephalography signal analysis model for real-time drowsiness detection : SEEGDD.
    Balam VP; Chinara S
    Phys Eng Sci Med; 2021 Sep; 44(3):713-726. PubMed ID: 34057671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Hybrid Approach to Detect Driver Drowsiness Utilizing Physiological Signals to Improve System Performance and Wearability.
    Awais M; Badruddin N; Drieberg M
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28858220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The use of two-channel electro-oculography in automatic detection of unintentional sleep onset.
    Virkkala J; Hasan J; Värri A; Himanen SL; Härmä M
    J Neurosci Methods; 2007 Jun; 163(1):137-44. PubMed ID: 17376536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals.
    Michielli N; Acharya UR; Molinari F
    Comput Biol Med; 2019 Mar; 106():71-81. PubMed ID: 30685634
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Drowsiness Detection System Based on PERCLOS and Facial Physiological Signal.
    Chang RC; Wang CY; Chen WT; Chiu CD
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm.
    Khushaba RN; Kodagoda S; Lal S; Dissanayake G
    IEEE Trans Biomed Eng; 2011 Jan; 58(1):121-31. PubMed ID: 20858575
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drowsiness Detection by Bayesian-Copula Discriminant Classifier Based on EEG Signals During Daytime Short Nap.
    Qian D; Wang B; Qing X; Zhang T; Zhang Y; Wang X; Nakamura M
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):743-754. PubMed ID: 27254855
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computer rejection of EEG artifact. II. Contamination by drowsiness.
    Gevins AS; Zeitlin GM; Ancoli S; Yeager CL
    Electroencephalogr Clin Neurophysiol; 1977 Jul; 43(1):31-42. PubMed ID: 68870
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-sensor driver monitoring for drowsiness prediction.
    Schwarz C; Gaspar J; Yousefian R
    Traffic Inj Prev; 2023; 24(sup1):S100-S104. PubMed ID: 37267009
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drowsiness detection during different times of day using multiple features.
    Sahayadhas A; Sundaraj K; Murugappan M
    Australas Phys Eng Sci Med; 2013 Jun; 36(2):243-50. PubMed ID: 23719977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wavelet analysis of electroencephalographic and electro-oculographic changes during the sleep onset period.
    Magosso E; Ursino M; Provini F; Montagna P
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4006-10. PubMed ID: 18002878
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alpha attenuation soon after closing the eyes as an objective indicator of sleepiness.
    Putilov AA; Donskaya OG
    Clin Exp Pharmacol Physiol; 2014 Dec; 41(12):956-64. PubMed ID: 25224885
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EEG Signal Multichannel Frequency-Domain Ratio Indices for Drowsiness Detection Based on Multicriteria Optimization.
    Stancin I; Frid N; Cifrek M; Jovic A
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696145
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tests of a New Drowsiness Characterization and Monitoring System Based on Ocular Parameters.
    François C; Hoyoux T; Langohr T; Wertz J; Verly JG
    Int J Environ Res Public Health; 2016 Jan; 13(2):174. PubMed ID: 26840325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluating the use of line length for automatic sleep spindle detection.
    Imtiaz SA; Rodriguez-Villegas E
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5024-7. PubMed ID: 25571121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drowsiness detection using heart rate variability.
    Vicente J; Laguna P; Bartra A; Bailón R
    Med Biol Eng Comput; 2016 Jun; 54(6):927-37. PubMed ID: 26780463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tensor-Based EEG Network Formation and Feature Extraction for Cross-Session Driving Drowsiness Detection.
    Shen M; Zou B; Li X; Zheng Y; Zhang L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():252-255. PubMed ID: 33017976
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A low computational cost algorithm for REM sleep detection using single channel EEG.
    Imtiaz SA; Rodriguez-Villegas E
    Ann Biomed Eng; 2014 Nov; 42(11):2344-59. PubMed ID: 25113231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of drowsiness events in night shift workers during morning driving.
    Liang Y; Horrey WJ; Howard ME; Lee ML; Anderson C; Shreeve MS; O'Brien CS; Czeisler CA
    Accid Anal Prev; 2019 May; 126():105-114. PubMed ID: 29126462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.