BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28269150)

  • 21. Wobbled splatting--a fast perspective volume rendering method for simulation of x-ray images from CT.
    Birkfellner W; Seemann R; Figl M; Hummel J; Ede C; Homolka P; Yang X; Niederer P; Bergmann H
    Phys Med Biol; 2005 May; 50(9):N73-84. PubMed ID: 15843725
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy.
    Samant SS; Xia J; Muyan-Ozcelik P; Owens JD
    Med Phys; 2008 Aug; 35(8):3546-53. PubMed ID: 18777915
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a GPU-based multithreaded software application to calculate digitally reconstructed radiographs for radiotherapy.
    Mori S; Kobayashi M; Kumagai M; Minohara S
    Radiol Phys Technol; 2009 Jan; 2(1):40-5. PubMed ID: 20821127
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulation of X-ray projections on GPU: Benchmarking gVirtualXray with clinically realistic phantoms.
    Pointon JL; Wen T; Tugwell-Allsup J; Sújar A; Létang JM; Vidal FP
    Comput Methods Programs Biomed; 2023 Jun; 234():107500. PubMed ID: 37030136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GPU-based multi-volume ray casting within VTK for medical applications.
    Bozorgi M; Lindseth F
    Int J Comput Assist Radiol Surg; 2015 Mar; 10(3):293-300. PubMed ID: 24841148
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-time 3D dose calculation and display: a tool for plan optimization.
    Matthews JW; Rosenberger FU; Bosch WR; Harms WB; Purdy JA
    Int J Radiat Oncol Biol Phys; 1996 Aug; 36(1):159-65. PubMed ID: 8823271
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A fast forward projection using multithreads for multirays on GPUs in medical image reconstruction.
    Chou CY; Chuo YY; Hung Y; Wang W
    Med Phys; 2011 Jul; 38(7):4052-65. PubMed ID: 21859004
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast DRR generation for 2D/3D registration.
    Birkfellner W; Seemann R; Figl M; Hummel J; Ede C; Homolka P; Yang X; Niederer P; Bergmann H
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):960-7. PubMed ID: 16686053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FUX-Sim: Implementation of a fast universal simulation/reconstruction framework for X-ray systems.
    Abella M; Serrano E; Garcia-Blas J; García I; de Molina C; Carretero J; Desco M
    PLoS One; 2017; 12(7):e0180363. PubMed ID: 28692677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of x-ray and CT image enhancements on the robustness and accuracy of a rigid 3D/2D image registration.
    Kim J; Yin FF; Zhao Y; Kim JH
    Med Phys; 2005 Apr; 32(4):866-73. PubMed ID: 15895569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging.
    Gallio E; Rampado O; Gianaria E; Bianchi SD; Ropolo R
    PLoS One; 2015; 10(11):e0141497. PubMed ID: 26545097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RealDRR - Rendering of realistic digitally reconstructed radiographs using locally trained image-to-image translation.
    Dhont J; Verellen D; Mollaert I; Vanreusel V; Vandemeulebroucke J
    Radiother Oncol; 2020 Dec; 153():213-219. PubMed ID: 33039426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Feasibility of MRI-based reference images for image-guided radiotherapy of the pelvis with either cone-beam computed tomography or planar localization images.
    Korhonen J; Kapanen M; Sonke JJ; Wee L; Salli E; Keyriläinen J; Seppälä T; Tenhunen M
    Acta Oncol; 2015 Jun; 54(6):889-95. PubMed ID: 25233439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CONRAD--a software framework for cone-beam imaging in radiology.
    Maier A; Hofmann HG; Berger M; Fischer P; Schwemmer C; Wu H; Müller K; Hornegger J; Choi JH; Riess C; Keil A; Fahrig R
    Med Phys; 2013 Nov; 40(11):111914. PubMed ID: 24320447
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rigid 2D/3D slice-to-volume registration and its application on fluoroscopic CT images.
    Birkfellner W; Figl M; Kettenbach J; Hummel J; Homolka P; Schernthaner R; Nau T; Bergmann H
    Med Phys; 2007 Jan; 34(1):246-55. PubMed ID: 17278510
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Image Correlation Between Digitally Reconstructed Radiographs, C-arm Fluoroscopic Radiographs, and X-ray: A Phantom Study.
    Wangler S; Hofmann J; Moser HL; Kuenzler M; Egli RJ; Schaer M
    Cureus; 2024 Jan; 16(1):e51868. PubMed ID: 38327943
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of automated image registration algorithm for image-guided radiotherapy (IGRT).
    Sharma SD; Dongre P; Mhatre V; Heigrujam M
    Australas Phys Eng Sci Med; 2012 Sep; 35(3):311-9. PubMed ID: 22948720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Rapid 2D-3D medical image registration based on CUDA].
    Li L; Zou B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Aug; 31(4):905-9. PubMed ID: 25464811
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A portable software tool for computing digitally reconstructed radiographs.
    Chaney EL; Thorn JS; Tracton G; Cullip T; Rosenman JG; Tepper JE
    Int J Radiat Oncol Biol Phys; 1995 May; 32(2):491-7. PubMed ID: 7751190
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultra-fast digital tomosynthesis reconstruction using general-purpose GPU programming for image-guided radiation therapy.
    Park JC; Park SH; Kim JS; Han Y; Cho MK; Kim HK; Liu Z; Jiang SB; Song B; Song WY
    Technol Cancer Res Treat; 2011 Aug; 10(4):295-306. PubMed ID: 21728386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.