These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28269179)

  • 1. Projected current density comparison in tDCS block and smooth FE modeling.
    Indahlastari A; Chauhan M; Sadleir RJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4079-4082. PubMed ID: 28269179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking transcranial electrical stimulation finite element models: a comparison study.
    Indahlastari A; Chauhan M; Sadleir RJ
    J Neural Eng; 2019 Apr; 16(2):026019. PubMed ID: 30605892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison between block and smooth modeling in finite element simulations of tDCS.
    Indahlastari A; Sadleir RJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3403-6. PubMed ID: 26737023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging of current flow in the human head during transcranial electrical therapy.
    Kasinadhuni AK; Indahlastari A; Chauhan M; Schär M; Mareci TH; Sadleir RJ
    Brain Stimul; 2017; 10(4):764-772. PubMed ID: 28457836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A flexible workflow for simulating transcranial electric stimulation in healthy and lesioned brains.
    Kalloch B; Bazin PL; Villringer A; Sehm B; Hlawitschka M
    PLoS One; 2020; 15(5):e0228119. PubMed ID: 32407389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sex difference in tDCS current mediated by changes in cortical anatomy: A study across young, middle and older adults.
    Bhattacharjee S; Kashyap R; Goodwill AM; O'Brien BA; Rapp B; Oishi K; Desmond JE; Chen SHA
    Brain Stimul; 2022; 15(1):125-140. PubMed ID: 34826627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of electrode-electrolyte spatial mismatch on transcranial direct current stimulation: a finite element modeling study.
    Chen L; Zou X; Tang R; Ke A; He J
    J Neural Eng; 2019 Aug; 16(5):056012. PubMed ID: 31195379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changing head model extent affects finite element predictions of transcranial direct current stimulation distributions.
    Indahlastari A; Chauhan M; Schwartz B; Sadleir RJ
    J Neural Eng; 2016 Dec; 13(6):066006. PubMed ID: 27705955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of cephalic and extracephalic montages for transcranial direct current stimulation--a numerical study.
    Noetscher GM; Yanamadala J; Makarov SN; Pascual-Leone A
    IEEE Trans Biomed Eng; 2014 Sep; 61(9):2488-98. PubMed ID: 25014947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution head model of transcranial direct current stimulation: A labeling analysis.
    Thomas C; Huang Y; Faria PC; Datta A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6442-6445. PubMed ID: 31947317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling the effect of electrode displacement on transcranial direct current stimulation (tDCS).
    Ramaraju S; Roula MA; McCarthy PW
    J Neural Eng; 2018 Feb; 15(1):016019. PubMed ID: 28925375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.
    Sajib SZK; Katoch N; Kim HJ; Kwon OI; Woo EJ
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2505-2514. PubMed ID: 28767360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of electric field modeling pipelines for transcranial direct current stimulation.
    Bhalerao GV; Sreeraj VS; Bose A; Narayanaswamy JC; Venkatasubramanian G
    Neurophysiol Clin; 2021 Aug; 51(4):303-318. PubMed ID: 34023189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing assumptions on prefrontal transcranial direct current stimulation: Comparison of electrode montages using multimodal fMRI.
    Wörsching J; Padberg F; Goerigk S; Heinz I; Bauer C; Plewnia C; Hasan A; Ertl-Wagner B; Keeser D
    Brain Stimul; 2018; 11(5):998-1007. PubMed ID: 29759944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Pursuit of DLPFC: Non-neuronavigated Methods to Target the Left Dorsolateral Pre-frontal Cortex With Symmetric Bicephalic Transcranial Direct Current Stimulation (tDCS).
    Seibt O; Brunoni AR; Huang Y; Bikson M
    Brain Stimul; 2015; 8(3):590-602. PubMed ID: 25862601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards precise brain stimulation: Is electric field simulation related to neuromodulation?
    Antonenko D; Thielscher A; Saturnino GB; Aydin S; Ittermann B; Grittner U; Flöel A
    Brain Stimul; 2019; 12(5):1159-1168. PubMed ID: 30930209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Computational Modeling to Inform tDCS Electrode Montages for the Promotion of Language Recovery in Post-stroke Aphasia.
    Galletta EE; Cancelli A; Cottone C; Simonelli I; Tecchio F; Bikson M; Marangolo P
    Brain Stimul; 2015; 8(6):1108-15. PubMed ID: 26198364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Electrode Drift in Transcranial Direct Current Stimulation.
    Woods AJ; Bryant V; Sacchetti D; Gervits F; Hamilton R
    Brain Stimul; 2015; 8(3):515-9. PubMed ID: 25583653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of electrode selection on modeling tDCS in the aging brain.
    Indahlastari A; Dunn AL; Pedersen S; Kraft JN; Someya S; Albizu A; Woods AJ
    Front Hum Neurosci; 2023; 17():1274114. PubMed ID: 38077189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Putting focus on transcranial direct current stimulation in language production studies.
    Klaus J; Schutter DJLG
    PLoS One; 2018; 13(8):e0202730. PubMed ID: 30138361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.