BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28269304)

  • 1. Effects of electrode displacement in high-definition transcranial direct current stimulation: A computational study.
    Hyeon Seo ; Donghyeon Kim ; Sung Chan Jun
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4618-4621. PubMed ID: 28269304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational study on effect of a transcranial channel as a skull/brain interface in the conventional rectangular patch-type transcranial direct current stimulation.
    Hyeon Seo ; Hyoung-Ihl Kim ; Sung Chan Jun
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1946-1949. PubMed ID: 29060274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of a Transcranial Channel as a Skull/Brain Interface in High-Definition Transcranial Direct Current Stimulation-A Computational Study.
    Seo H; Kim HI; Jun SC
    Sci Rep; 2017 Jan; 7():40612. PubMed ID: 28084429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical Excitability through Anodal Transcranial Direct Current Stimulation: a Computational Approach.
    Arora Y; Chowdhury SR
    J Med Syst; 2020 Jan; 44(2):48. PubMed ID: 31900599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS).
    Alam M; Truong DQ; Khadka N; Bikson M
    Phys Med Biol; 2016 Jun; 61(12):4506-21. PubMed ID: 27223853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Key factors in the cortical response to transcranial electrical Stimulations-A multi-scale modeling study.
    Chung H; Im C; Seo H; Jun SC
    Comput Biol Med; 2022 May; 144():105328. PubMed ID: 35231800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relation between the electric field and activation of cortical neurons in transcranial electrical stimulation.
    Seo H; Jun SC
    Brain Stimul; 2019; 12(2):275-289. PubMed ID: 30449635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of NIRS Probe Based on Computational Model to Find Out the Optimal Location for Non-Invasive Brain Stimulation.
    Sharma G; Roy Chowdhury S
    J Med Syst; 2018 Oct; 42(12):244. PubMed ID: 30374669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cost of focality in TDCS: Interindividual variability in electric fields.
    Mikkonen M; Laakso I; Tanaka S; Hirata A
    Brain Stimul; 2020; 13(1):117-124. PubMed ID: 31606449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of Transcranial Direct Current Stimulation (tDCS) Electrode Size and Current Intensity on Motor Cortical Excitability: Evidence From Single and Repeated Sessions.
    Ho KA; Taylor JL; Chew T; Gálvez V; Alonzo A; Bai S; Dokos S; Loo CK
    Brain Stimul; 2016; 9(1):1-7. PubMed ID: 26350410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of focality and direction in dense electrode array transcranial direct current stimulation (tDCS).
    Guler S; Dannhauer M; Erem B; Macleod R; Tucker D; Turovets S; Luu P; Erdogmus D; Brooks DH
    J Neural Eng; 2016 Jun; 13(3):036020. PubMed ID: 27152752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric fields of motor and frontal tDCS in a standard brain space: A computer simulation study.
    Laakso I; Tanaka S; Mikkonen M; Koyama S; Sadato N; Hirata A
    Neuroimage; 2016 Aug; 137():140-151. PubMed ID: 27188218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-scale model of axonal and dendritic polarization by transcranial direct current stimulation in realistic head geometry.
    Aberra AS; Wang R; Grill WM; Peterchev AV
    Brain Stimul; 2023; 16(6):1776-1791. PubMed ID: 38056825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What is the optimal anodal electrode position for inducing corticomotor excitability changes in transcranial direct current stimulation?
    Lee M; Kim YH; Im CH; Kim JH; Park CH; Chang WH; Lee A
    Neurosci Lett; 2015 Jan; 584():347-50. PubMed ID: 25450146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating transcranial direct current stimulation with a detailed anisotropic human head model.
    Rampersad SM; Janssen AM; Lucka F; Aydin Ü; Lanfer B; Lew S; Wolters CH; Stegeman DF; Oostendorp TF
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):441-52. PubMed ID: 24760939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How electrode montage affects transcranial direct current stimulation of the human motor cortex.
    Salvador R; Wenger C; Nitsche MA; Miranda PC
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6924-7. PubMed ID: 26737885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation.
    Minjoli S; Saturnino GB; Blicher JU; Stagg CJ; Siebner HR; Antunes A; Thielscher A
    Neuroimage Clin; 2017; 15():106-117. PubMed ID: 28516033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation Effect of Inter-subject Variability in tDCS-Multi-scale Modeling Study.
    Im C; Seo H; Jun SC
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3092-3095. PubMed ID: 30441048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Electrode Number on the Performance of High-Definition Transcranial Direct Current Stimulation (HD-tDCS).
    Wang Y; Zhou H; Li Y; Liu W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4182-4185. PubMed ID: 30441277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: a neurophysiological study.
    Kuo HI; Bikson M; Datta A; Minhas P; Paulus W; Kuo MF; Nitsche MA
    Brain Stimul; 2013 Jul; 6(4):644-8. PubMed ID: 23149292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.