BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28269318)

  • 1. The limb movement analysis of rehabilitation exercises using wearable inertial sensors.
    Bingquan Huang ; Giggins O; Kechadi T; Caulfield B
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4686-4689. PubMed ID: 28269318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of inertial sensors for the classification of rehabilitation exercises.
    Giggins O; Sweeney KT; Caulfield B
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2965-8. PubMed ID: 25570613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rehab@home: a tool for home-based motor function rehabilitation.
    Faria C; Silva J; Campilho A
    Disabil Rehabil Assist Technol; 2015 Jan; 10(1):67-74. PubMed ID: 24070452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Verification of a Portable Motion Tracking System for Remote Management of Physical Rehabilitation of the Knee.
    Bell KM; Onyeukwu C; McClincy MP; Allen M; Bechard L; Mukherjee A; Hartman RA; Smith C; Lynch AD; Irrgang JJ
    Sensors (Basel); 2019 Feb; 19(5):. PubMed ID: 30823373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of Low Back Physiotherapy Exercises With Inertial Sensors and Machine Learning: Algorithm Development and Validation.
    Alfakir A; Arrowsmith C; Burns D; Razmjou H; Hardisty M; Whyne C
    JMIR Rehabil Assist Technol; 2022 Aug; 9(3):e38689. PubMed ID: 35998014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rehabilitation exercise assessment using inertial sensors: a cross-sectional analytical study.
    Giggins OM; Sweeney KT; Caulfield B
    J Neuroeng Rehabil; 2014 Nov; 11():158. PubMed ID: 25431092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technology in Rehabilitation: Evaluating the Single Leg Squat Exercise with Wearable Inertial Measurement Units.
    Whelan DF; O'Reilly MA; Ward TE; Delahunt E; Caulfield B
    Methods Inf Med; 2017 Mar; 56(2):88-94. PubMed ID: 27782290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined Vision and Wearable Sensors-based System for Movement Analysis in Rehabilitation.
    Spasojević S; Ilić TV; Milanović S; Potkonjak V; Rodić A; Santos-Victor J
    Methods Inf Med; 2017 Mar; 56(2):95-111. PubMed ID: 27922660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tele-monitoring and tele-rehabilitation of the shoulder muscular-skeletal diseases through wearable systems.
    Carbonaro N; Lucchesi I; Lorusssi F; Tognetti A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4410-4413. PubMed ID: 30441330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensor-based postural feedback is more effective than conventional feedback to improve lumbopelvic movement control in patients with chronic low back pain: a randomised controlled trial.
    Matheve T; Brumagne S; Demoulin C; Timmermans A
    J Neuroeng Rehabil; 2018 Sep; 15(1):85. PubMed ID: 30253807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmentation of shoulder rehabilitation exercises for single and multiple inertial sensor systems.
    Brennan L; Bevilacqua A; Kechadi T; Caulfield B
    J Rehabil Assist Technol Eng; 2020; 7():2055668320915377. PubMed ID: 32913661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An activity recognition model using inertial sensor nodes in a wireless sensor network for frozen shoulder rehabilitation exercises.
    Lin HC; Chiang SY; Lee K; Kan YC
    Sensors (Basel); 2015 Jan; 15(1):2181-204. PubMed ID: 25608218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technology in Rehabilitation: Comparing Personalised and Global Classification Methodologies in Evaluating the Squat Exercise with Wearable IMUs.
    Whelan DF; O'Reilly MA; Ward TE; Delahunt E; Caulfield B
    Methods Inf Med; 2017 Oct; 56(5):361-369. PubMed ID: 28612890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classifying human motion quality for knee osteoarthritis using accelerometers.
    Taylor PE; Almeida GJ; Kanade T; Hodgins JK
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():339-43. PubMed ID: 21096970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated evaluation of physical therapy exercises using multi-template dynamic time warping on wearable sensor signals.
    Yurtman A; Barshan B
    Comput Methods Programs Biomed; 2014 Nov; 117(2):189-207. PubMed ID: 25168775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring Movement Quality of the Stroke-Impaired Upper Extremity with a Wearable Sensor: Toward a Smoothness Metric for Home Rehabilitation Exercise Programs.
    Okita S; De Lucena DS; Chan V; Reinkensmeyer DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6691-6694. PubMed ID: 34892643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adherence monitoring of rehabilitation exercise with inertial sensors: A clinical validation study.
    Bavan L; Surmacz K; Beard D; Mellon S; Rees J
    Gait Posture; 2019 May; 70():211-217. PubMed ID: 30903993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wearable sensors to predict improvement following an exercise intervention in patients with knee osteoarthritis.
    Kobsar D; Osis ST; Boyd JE; Hettinga BA; Ferber R
    J Neuroeng Rehabil; 2017 Sep; 14(1):94. PubMed ID: 28899433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.