These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 28269337)

  • 1. Implementation of a control system for a power wheelchair with induction of a β/α ratio by visual feedback.
    Iida Y; Horie R
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4772-4775. PubMed ID: 28269337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The smart wheelchair component system.
    Simpson R; Lopresti E; Hayashi S; Nourbakhsh I; Miller D
    J Rehabil Res Dev; 2004 May; 41(3B):429-42. PubMed ID: 15543461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of disability EEG based wheelchair control system: Coherent taxonomy, open challenges and recommendations.
    Al-Qaysi ZT; Zaidan BB; Zaidan AA; Suzani MS
    Comput Methods Programs Biomed; 2018 Oct; 164():221-237. PubMed ID: 29958722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards BCI-actuated smart wheelchair system.
    Tang J; Liu Y; Hu D; Zhou Z
    Biomed Eng Online; 2018 Aug; 17(1):111. PubMed ID: 30126416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid brain computer interface system based on the neurophysiological protocol and brain-actuated switch for wheelchair control.
    Cao L; Li J; Ji H; Jiang C
    J Neurosci Methods; 2014 May; 229():33-43. PubMed ID: 24713576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-computer interface combining eye saccade two-electrode EEG signals and voice cues to improve the maneuverability of wheelchair.
    Wang KJ; Zhang L; Luan B; Tung HW; Liu Q; Wei J; Sun M; Mao ZH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1073-1078. PubMed ID: 28813964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and development of solar power-assisted manual/electric wheelchair.
    Chien CS; Huang TY; Liao TY; Kuo TY; Lee TM
    J Rehabil Res Dev; 2014; 51(9):1411-25. PubMed ID: 25785910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a Web-Based Monitoring System for Power Tilt-in-Space Wheelchairs: Formative Evaluation.
    Campeau-Vallerand C; Michaud F; Routhier F; Archambault PS; Létourneau D; Gélinas-Bronsard D; Auger C
    JMIR Rehabil Assist Technol; 2019 Oct; 6(2):e13560. PubMed ID: 31674918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of a simulated wheelchair based on a hybrid brain computer interface.
    Long J; Li Y; Wang H; Yu T; Pan J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6727-30. PubMed ID: 23367473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair.
    Long J; Li Y; Wang H; Yu T; Pan J; Li F
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):720-9. PubMed ID: 22692936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of wheelchair maneuvers based on noisy inertial sensor data: a preliminary study.
    Fu J; Liu T; Jones M; Qian G; Jan YK
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1731-4. PubMed ID: 25570310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A facial expression controlled wheelchair for people with disabilities.
    Rabhi Y; Mrabet M; Fnaiech F
    Comput Methods Programs Biomed; 2018 Oct; 165():89-105. PubMed ID: 30337084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Commanding a Brain-Controlled Wheelchair Using Steady-State Somatosensory Evoked Potentials.
    Kim KT; Suk HI; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2018 Mar; 26(3):654-665. PubMed ID: 27514060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Virtual Environment-Based Training System for a Blind Wheelchair User Through Use of Three-Dimensional Audio Supported by Electroencephalography.
    Silva de Souza E; Cardoso A; Lamounier E
    Telemed J E Health; 2018 Aug; 24(8):614-620. PubMed ID: 29360418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An EOG-Based Human-Machine Interface for Wheelchair Control.
    Huang Q; He S; Wang Q; Gu Z; Peng N; Li K; Zhang Y; Shao M; Li Y
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):2023-2032. PubMed ID: 28767359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How many people would benefit from a smart wheelchair?
    Simpson RC; LoPresti EF; Cooper RA
    J Rehabil Res Dev; 2008; 45(1):53-71. PubMed ID: 18566926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the usability of a smartphone virtual seating coach application for powered wheelchair users.
    Wu YK; Liu HY; Kelleher A; Pearlman J; Cooper RA
    Med Eng Phys; 2016 Jun; 38(6):569-75. PubMed ID: 27079179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An EEG-/EOG-Based Hybrid Brain-Computer Interface: Application on Controlling an Integrated Wheelchair Robotic Arm System.
    Huang Q; Zhang Z; Yu T; He S; Li Y
    Front Neurosci; 2019; 13():1243. PubMed ID: 31824245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Brain Machine Interface for command based control of a wheelchair using conditioning of oscillatory brain activity.
    Hamad EM; Al-Gharabli SI; Saket MM; Jubran O
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1002-1005. PubMed ID: 29060043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Hephaestus Smart Wheelchair System.
    Simpson RC; Poirot D; Baxter F
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):118-22. PubMed ID: 12236449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.