BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28269341)

  • 1. Development of multi-spot impedance sensing biopsy needle based on attachable and flexible sensor film.
    Jaeho Park ; Inkyu Park
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4788-4791. PubMed ID: 28269341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biopsy Needle Integrated with Electrical Impedance Sensing Microelectrode Array towards Real-time Needle Guidance and Tissue Discrimination.
    Park J; Choi WM; Kim K; Jeong WI; Seo JB; Park I
    Sci Rep; 2018 Jan; 8(1):264. PubMed ID: 29321531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-pair electrode based impedance sensing biopsy needle for tissue discrimination during biopsy process.
    Jaeho Park ; Sanghyeok Kim ; Inkyu Park
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1695-8. PubMed ID: 25570301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biopsy needle integrated with multi-modal physical/chemical sensor array.
    Park J; Jeong Y; Kim J; Gu J; Wang J; Park I
    Biosens Bioelectron; 2020 Jan; 148():111822. PubMed ID: 31698304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A real-time electrical impedance sensing biopsy needle.
    Mishra V; Bouayad H; Schned A; Hartov A; Heaney J; Halter RJ
    IEEE Trans Biomed Eng; 2012 Dec; 59(12):3327-36. PubMed ID: 22929364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscale Biosensor Array Based on Flexible Polymeric Platform toward Lab-on-a-Needle: Real-Time Multiparameter Biomedical Assays on Curved Needle Surfaces.
    Park J; Sempionatto JR; Kim J; Jeong Y; Gu J; Wang J; Park I
    ACS Sens; 2020 May; 5(5):1363-1373. PubMed ID: 32105060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporating a biopsy needle as an electrode in transrectal electrical impedance imaging.
    Wan Y; Borsic A; Hartov A; Halter R
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6220-3. PubMed ID: 23367350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rigid and flexible thin-film multielectrode arrays for transmural cardiac recording.
    Mastrototaro JJ; Massoud HZ; Pilkington TC; Ideker RE
    IEEE Trans Biomed Eng; 1992 Mar; 39(3):271-9. PubMed ID: 1555857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of Depth Profiling into Biotissues Using Micro Electrical Impedance Spectroscopy on a Needle with Selective Passivation.
    Yun J; Kim HW; Lee JH
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 28009845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Design of dynamic skin impedance detector for the back electrode of high frequency surgical equipment].
    Huang R
    Zhongguo Yi Liao Qi Xie Za Zhi; 2012 Sep; 36(5):345-6. PubMed ID: 23289338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation and Feasibility Study of Flow Sensor on Flexible Polymer for Healthcare Application.
    Maji D; Das S
    IEEE Trans Biomed Eng; 2013 Dec; 60(12):3298-305. PubMed ID: 23739781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photrode optical sensor for electrophysiological monitoring.
    Kingsley SA; Sriram S; Pollick A; Marsh J
    Aviat Space Environ Med; 2003 Nov; 74(11):1215-6. PubMed ID: 14620484
    [No Abstract]   [Full Text] [Related]  

  • 13. A Wearable CMOS Impedance to Frequency Sensing System for Non-Invasive Impedance Measurements.
    Hedayatipour A; Aslanzadeh S; Hesari SH; Haque MA; McFarlane N
    IEEE Trans Biomed Circuits Syst; 2020 Oct; 14(5):1108-1121. PubMed ID: 32946399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A needle-type sensor for monitoring glucose in whole blood.
    Yang Q; Atanasov P; Wilkins E
    Biomed Instrum Technol; 1997; 31(1):54-62. PubMed ID: 9051226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electrocatalytic glucose sensor for in-vivo application.
    Preidel W; Saeger S; von Lucadou I; Lager W
    Biomed Instrum Technol; 1991; 25(3):215-9. PubMed ID: 1855107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly wearable galvanic skin response sensor using flexible and conductive polymer foam.
    Kim J; Kwon S; Seo S; Park K
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6631-4. PubMed ID: 25571516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recording characteristics of electrical impedance-electromyography needle electrodes.
    Kwon H; Di Cristina JF; Rutkove SB; Sanchez B
    Physiol Meas; 2018 May; 39(5):055005. PubMed ID: 29616985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric cell-substrate impedance sensing with screen printed electrode structures.
    Brischwein M; Herrmann S; Vonau W; Berthold F; Grothe H; Motrescu ER; Wolf B
    Lab Chip; 2006 Jun; 6(6):819-22. PubMed ID: 16738736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passive, wireless transduction of electrochemical impedance across thin-film microfabricated coils using reflected impedance.
    Baldwin A; Yu L; Pratt M; Scholten K; Meng E
    Biomed Microdevices; 2017 Sep; 19(4):87. PubMed ID: 28948395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An easy-fabricated and disposable polymer-film microfluidic impedance cytometer for cell sensing.
    Zhu S; Zhang X; Chen M; Tang D; Han Y; Xiang N; Ni Z
    Anal Chim Acta; 2021 Aug; 1175():338759. PubMed ID: 34330437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.