These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 28269346)

  • 1. Variation of radio frequency induced power deposition due to second surrounding tissue.
    Kozlov M; Schaefers G
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4808-4811. PubMed ID: 28269346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radio frequency induced heating of an insulated wire during magnetic resonance imaging.
    Kozlov M; Schaefers G
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6238-6241. PubMed ID: 28269677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling RF-Induced Power Deposition and Temperature Rise of Coaxial Leads with Helical Wires.
    Kozlov M; Horner M; Kainz W
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1895-1898. PubMed ID: 31946268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of radio-frequency induced currents on lead wires during MR imaging using a modified transmission line method.
    Acikel V; Atalar E
    Med Phys; 2011 Dec; 38(12):6623-32. PubMed ID: 22149844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5 T and 3T: The role of surgical lead management.
    Golestanirad L; Kirsch J; Bonmassar G; Downs S; Elahi B; Martin A; Iacono MI; Angelone LM; Keil B; Wald LL; Pilitsis J
    Neuroimage; 2019 Jan; 184():566-576. PubMed ID: 30243973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling radiofrequency responses of realistic multi-electrode leads containing helical and straight wires.
    Kozlov M; Horner M; Kainz W
    MAGMA; 2020 Jun; 33(3):421-437. PubMed ID: 31745756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermo-Acoustic Ultrasound for Detection of RF-Induced Device Lead Heating in MRI.
    Dixit N; Stang PP; Pauly JM; Scott GC
    IEEE Trans Med Imaging; 2018 Feb; 37(2):536-546. PubMed ID: 29053449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SAR Simulations & Safety.
    Fiedler TM; Ladd ME; Bitz AK
    Neuroimage; 2018 Mar; 168():33-58. PubMed ID: 28336426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RF tissue-heating near metallic implants during magnetic resonance examinations: an approach in the ac limit.
    Ballweg V; Eibofner F; Graf H
    Med Phys; 2011 Oct; 38(10):5522-9. PubMed ID: 21992370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Safety aspects of radiofrequency power deposition in magnetic resonance.
    Schaefer DJ
    Magn Reson Imaging Clin N Am; 1998 Nov; 6(4):775-89. PubMed ID: 9799855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the RF heating of a generic deep brain stimulator exposed in 1.5 T magnetic resonance scanners.
    Cabot E; Lloyd T; Christ A; Kainz W; Douglas M; Stenzel G; Wedan S; Kuster N
    Bioelectromagnetics; 2013 Feb; 34(2):104-13. PubMed ID: 23060256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of different versions of a human model located inside a 1.5T MRI whole body RF coil.
    Kozlov M; Tankaria H; Noetscher GM; Makarov SN
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1477-1480. PubMed ID: 29060158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of magnetic resonance imagers on implanted neurostimulators.
    Gleason CA; Kaula NF; Hricak H; Schmidt RA; Tanagho EA
    Pacing Clin Electrophysiol; 1992 Jan; 15(1):81-94. PubMed ID: 1371004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of electrodes and implantable pulse generator cases for the analysis of implant tip heating under MR imaging.
    Acikel V; Uslubas A; Atalar E
    Med Phys; 2015 Jul; 42(7):3922-31. PubMed ID: 26133593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the RF heating of coronary stents at 7.0 Tesla MRI.
    Winter L; Oberacker E; Özerdem C; Ji Y; von Knobelsdorff-Brenkenhoff F; Weidemann G; Ittermann B; Seifert F; Niendorf T
    Magn Reson Med; 2015 Oct; 74(4):999-1010. PubMed ID: 25293952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of RF heating due to various implants during MR procedures.
    Muranaka H; Horiguchi T; Ueda Y; Tanki N
    Magn Reson Med Sci; 2011; 10(1):11-9. PubMed ID: 21441723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive SAR mass-averaging framework to improve predictions of local RF heating near a hip implant for parallel transmit at 7 T.
    Destruel A; O'Brien K; Jin J; Liu F; Barth M; Crozier S
    Magn Reson Med; 2019 Jan; 81(1):615-627. PubMed ID: 30058186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased radio-frequency power absorption in human tissue due to coupling between body coil and surface coil.
    Boesiger P; Buchli R; Saner M; Meier D
    Ann N Y Acad Sci; 1992 Mar; 649():160-5. PubMed ID: 1580489
    [No Abstract]   [Full Text] [Related]  

  • 19. Radiofrequency heating studies on anesthetized swine using fractionated dipole antennas at 10.5 T.
    Eryaman Y; Lagore RL; Ertürk MA; Utecht L; Zhang P; Torrado-Carvajal A; Türk EA; DelaBarre L; Metzger GJ; Adriany G; Uğurbil K; Vaughan JT
    Magn Reson Med; 2018 Jan; 79(1):479-488. PubMed ID: 28370375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A numerical and experimental study of RF shimming in the presence of hip prostheses using adaptive SAR at 3 T.
    Destruel A; Fuentes M; Weber E; O'Brien K; Jin J; Liu F; Barth M; Crozier S
    Magn Reson Med; 2019 Jun; 81(6):3826-3839. PubMed ID: 30803001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.