These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 28269350)

  • 1. SAW-LC coupled resonator wideband VCO for medical telemetry.
    Venkateswaran M; Hillig M; Brown JE; Stadnik PJ; Von Arx JA; Sutton B; Stotts LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4824-4827. PubMed ID: 28269350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wireless Low-Power Integrated Basal-Body-Temperature Detection Systems Using Teeth Antennas in the MedRadio Band.
    Yang CL; Zheng GT
    Sensors (Basel); 2015 Nov; 15(11):29467-77. PubMed ID: 26610508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A MedRadio-band low-energy-per-bit 4-Mbps CMOS OOK receiver for implantable medical devices.
    Chou CW; Liu LC; Wu CY
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5171-4. PubMed ID: 24110900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-WiTel: A Low-Power Integrated Wireless Telemetry System for Healthcare Applications in 401-406 MHz Band of MedRadio Spectrum.
    Srivastava A; Sankar K N; Chatterjee B; Das D; Ahmad M; Kukkundoor RK; Saraf V; Ananthapadmanabhan J; Sharma DK; Baghini MS
    IEEE J Biomed Health Inform; 2018 Mar; 22(2):483-494. PubMed ID: 28113332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Inductive Power and Data Telemetry Subsystem With Fast Transient Low Dropout Regulator for Biomedical Implants.
    Lin YP; Tang KT
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):435-44. PubMed ID: 26285218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological channel modeling and implantable UWB antenna design for neural recording systems.
    Bahrami H; Mirbozorgi SA; Rusch LA; Gosselin B
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):88-98. PubMed ID: 25055379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Implementation of Low Power High-Efficient Transceiver for Body Channel Communications.
    Vijayalakshmi S; Nagarajan V
    J Med Syst; 2019 Feb; 43(4):81. PubMed ID: 30788605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency Splitting Analysis and Compensation Method for Inductive Wireless Powering of Implantable Biosensors.
    Schormans M; Valente V; Demosthenous A
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27527174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal operating frequency in wireless power transmission for implantable devices.
    Poon AS; O'Driscoll S; Meng TH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5674-9. PubMed ID: 18003300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel technology for the provision of power to implantable physiological devices.
    Budgett DM; Hu AP; Si P; Pallas WT; Donnelly MG; Broad JW; Barrett CJ; Guild SJ; Malpas SC
    J Appl Physiol (1985); 2007 Apr; 102(4):1658-63. PubMed ID: 17218431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cavity Resonator Wireless Power Transfer System for Freely Moving Animal Experiments.
    Mei H; Thackston KA; Bercich RA; Jefferys JG; Irazoqui PP
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):775-785. PubMed ID: 27295647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fully integrated 200 µW, 40 pJ/b wireless transmitter for implanted medical devices and neural prostheses.
    Goodarzy F; Skafidas E
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3246-9. PubMed ID: 24110420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dual band wireless power and data telemetry for retinal prosthesis.
    Wang G; Liu W; Sivaprakasam M; Zhou M; Weiland JD; Humayun MS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4392-5. PubMed ID: 17946243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulative and experimental research on wireless power transmission technique in implantable medical device.
    Yu Y; Hao H; Wang W; Li L
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():923-6. PubMed ID: 19963736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wireless communication with implanted medical devices using the conductive properties of the body.
    Ferguson JE; Redish AD
    Expert Rev Med Devices; 2011 Jul; 8(4):427-33. PubMed ID: 21728728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Low-Power Injection-Locked VCO for an Implantable MICS Band Transmitter with Wireless Frequency Reference and Tune-while-Lock Channel Calibration.
    Nenadovic M; Fiebig N; Fischer G; Wessel J; Kissinger D
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2993-2996. PubMed ID: 30441027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wireless technologies for closed-loop retinal prostheses.
    Ng DC; Bai S; Yang J; Tran N; Skafidas E
    J Neural Eng; 2009 Dec; 6(6):065004. PubMed ID: 19850974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic frequency controller for power amplifiers used in bio-implanted applications: issues and challenges.
    Hannan MA; Hussein HA; Mutashar S; Samad SA; Hussain A
    Sensors (Basel); 2014 Dec; 14(12):23843-70. PubMed ID: 25615728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A battery-free multichannel digital neural/EMG telemetry system for flying insects.
    Thomas SJ; Harrison RR; Leonardo A; Reynolds MS
    IEEE Trans Biomed Circuits Syst; 2012 Oct; 6(5):424-36. PubMed ID: 23853229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Cost and Active Control of Radiation of Wearable Medical Health Device for Wireless Body Area Network.
    Jin Y
    J Med Syst; 2019 Apr; 43(5):137. PubMed ID: 30963291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.