These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 28269383)
21. Analysis of a Pulse Rate Variability Measurement Using a Smartphone Camera. Bánhalmi A; Borbás J; Fidrich M; Bilicki V; Gingl Z; Rudas L J Healthc Eng; 2018; 2018():4038034. PubMed ID: 29666670 [TBL] [Abstract][Full Text] [Related]
22. Design and realization of a wireless sensor gateway for health monitoring. Becher K; Figueiredo CP; Muhle C; Ruff R; Mendes PM; Hoffmann KP Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():374-7. PubMed ID: 21097188 [TBL] [Abstract][Full Text] [Related]
23. Characterization and reduction of motion artifacts in photoplethysmographic signals from a wrist-worn device. Tăuţan AM; Young A; Wentink E; Wieringa F Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6146-9. PubMed ID: 26737695 [TBL] [Abstract][Full Text] [Related]
24. A Low-Power Photoplethysmogram-Based Heart Rate Sensor Using Heartbeat Locked Loop. Lee J; Jang DH; Park S; Cho S IEEE Trans Biomed Circuits Syst; 2018 Dec; 12(6):1220-1229. PubMed ID: 30334807 [TBL] [Abstract][Full Text] [Related]
25. Novel heart rate variability index for wrist-worn wearable devices subject to motion artifacts that complicate measurement of the continuous pulse interval. Baek HJ; Cho J Physiol Meas; 2019 Nov; 40(10):105010. PubMed ID: 31593935 [TBL] [Abstract][Full Text] [Related]
26. Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals. Jeyhani V; Mahdiani S; Peltokangas M; Vehkaoja A Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5952-5. PubMed ID: 26737647 [TBL] [Abstract][Full Text] [Related]
27. A Wristwatch-Based Wireless Sensor Platform for IoT Health Monitoring Applications. Kumar S; Buckley JL; Barton J; Pigeon M; Newberry R; Rodencal M; Hajzeraj A; Hannon T; Rogers K; Casey D; O'Sullivan D; O'Flynn B Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32192204 [TBL] [Abstract][Full Text] [Related]
28. Solar powered wrist worn acquisition system for continuous photoplethysmogram monitoring. Dieffenderfer JP; Beppler E; Novak T; Whitmire E; Jayakumar R; Randall C; Qu W; Rajagopalan R; Bozkurt A Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3142-5. PubMed ID: 25570657 [TBL] [Abstract][Full Text] [Related]
29. Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique. Nakajima K; Tamura T; Miike H Med Eng Phys; 1996 Jul; 18(5):365-72. PubMed ID: 8818134 [TBL] [Abstract][Full Text] [Related]
30. In obstructive sleep apnea patients, automatic determination of respiratory arrests by photoplethysmography signal and heart rate variability. Bozkurt MR; Uçar MK; Bozkurt F; Bilgin C Australas Phys Eng Sci Med; 2019 Dec; 42(4):959-979. PubMed ID: 31515685 [TBL] [Abstract][Full Text] [Related]
31. A synchronous multi-body sensor platform in a Wireless Body Sensor Network: design and implementation. Gil Y; Wu W; Lee J Sensors (Basel); 2012; 12(8):10381-94. PubMed ID: 23112605 [TBL] [Abstract][Full Text] [Related]
32. Smartphone-based photoplethysmographic imaging for heart rate monitoring. Alafeef M J Med Eng Technol; 2017 Jul; 41(5):387-395. PubMed ID: 28300460 [TBL] [Abstract][Full Text] [Related]
33. [Design of a Front-end Device of Heart Rate Variability Analysis System Based on Photoplethysmography]. Shi L; Sun P; Pang Y; Luo Z; Wang W; Wang Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Feb; 33(1):14-7. PubMed ID: 27382733 [TBL] [Abstract][Full Text] [Related]
34. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform. Wu HT; Lewis GF; Davila MI; Daubechies I; Porges SW Methods Inf Med; 2016 Oct; 55(5):463-472. PubMed ID: 27626806 [TBL] [Abstract][Full Text] [Related]
35. A Portable, Wireless Photoplethysomography Sensor for Assessing Health of Arteriovenous Fistula Using Class-Weighted Support Vector Machine. Chao PC; Chiang PY; Kao YH; Tu TY; Yang CY; Tarng DC; Wey CL Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30423988 [TBL] [Abstract][Full Text] [Related]
36. A Wearable Pulse Oximeter With Wireless Communication and Motion Artifact Tailoring for Continuous Use. Chacon PJ; Limeng Pu ; da Costa TH; Young-Ho Shin ; Ghomian T; Shamkhalichenar H; Hsiao-Chun Wu ; Irving BA; Jin-Woo Choi IEEE Trans Biomed Eng; 2019 Jun; 66(6):1505-1513. PubMed ID: 30307850 [TBL] [Abstract][Full Text] [Related]
37. Improved Heart Rate Tracking Using Multiple Wrist-type Photoplethysmography during Physical Activities. Zhu L; Du D Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440267 [TBL] [Abstract][Full Text] [Related]
38. Study of Artifact-Resistive Technology Based on a Novel Dual Photoplethysmography Method for Wearable Pulse Rate Monitors. Zhou C; Feng J; Hu J; Ye X J Med Syst; 2016 Mar; 40(3):56. PubMed ID: 26645320 [TBL] [Abstract][Full Text] [Related]
39. Improving Pulse Rate Measurements during Random Motion Using a Wearable Multichannel Reflectance Photoplethysmograph. Warren KM; Harvey JR; Chon KH; Mendelson Y Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26959034 [TBL] [Abstract][Full Text] [Related]
40. Photoplethysmogram measurement without direct skin-to-sensor contact using an adaptive light source intensity control. Baek HJ; Chung GS; Kim KK; Kim JS; Park KS IEEE Trans Inf Technol Biomed; 2009 Nov; 13(6):1085-8. PubMed ID: 19775979 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]