These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28269395)

  • 1. Simulation of fluid environment using a robotic orthosis on human lower extremity for therapeutic purposes.
    Ertop TE; Yuksel T; Konukseven EI
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5015-5018. PubMed ID: 28269395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of body weight support variation on muscle activities during robot assisted gait: a dynamic simulation study.
    Hussain S; Jamwal PK; Ghayesh MH
    Comput Methods Biomech Biomed Engin; 2017 May; 20(6):626-635. PubMed ID: 28349768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified Computed Torque Control of a Robotic Orthosis for Gait Rehabilitation.
    Dao QT; Yamamoto SI
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1719-1722. PubMed ID: 30440726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary Evaluation of Disturbance Torque Estimation Approaches for Lower-limb Robotic Rehabilitation.
    Jaimes JC; Adriano A G S
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():715-720. PubMed ID: 31374715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An intrinsically compliant robotic orthosis for treadmill training.
    Hussain S; Xie SQ; Jamwal PK; Parsons J
    Med Eng Phys; 2012 Dec; 34(10):1448-53. PubMed ID: 22421099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single joint robotic orthoses for gait rehabilitation: An educational technical review.
    Hussain S; Jamwal PK; Ghayesh MH
    J Rehabil Med; 2016 Apr; 48(4):333-8. PubMed ID: 26936800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward goal-oriented robotic gait training: The effect of gait speed and stride length on lower extremity joint torques.
    McGrath RL; Pires-Fernandes M; Knarr B; Higginson JS; Sergi F
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():270-275. PubMed ID: 28813830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. State-of-the-art robotic gait rehabilitation orthoses: design and control aspects.
    Hussain S
    NeuroRehabilitation; 2014; 35(4):701-9. PubMed ID: 25318783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint Torque and Mechanical Power of Lower Extremity and Its Relevance to Hamstring Strain during Sprint Running.
    Zhong Y; Fu W; Wei S; Li Q; Liu Y
    J Healthc Eng; 2017; 2017():8927415. PubMed ID: 29065661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pneumatically-actuated lower-limb orthosis.
    Wu SK; Jordan M; Shen X
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8126-9. PubMed ID: 22256228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and evaluation of a prototype gait orthosis for early rehabilitation of walking.
    Fang J; Vuckovic A; Galen S; Cossar C; Conway BA; Hunt KJ
    Technol Health Care; 2014 Jan; 22(2):273-88. PubMed ID: 24898868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait Guidance Control for Damping of Unnatural Motion in a Powered Pediatric Lower-Limb Orthosis.
    Laubscher CA; Sawicki JT
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():676-681. PubMed ID: 31374709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing Effectiveness and Costs in Robot-Mediated Lower Limbs Rehabilitation: A Meta-Analysis and State of the Art.
    Carpino G; Pezzola A; Urbano M; Guglielmelli E
    J Healthc Eng; 2018; 2018():7492024. PubMed ID: 29973978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compliant gait assistance triggered by user intention.
    Rajasekaran V; Aranda J; Casals A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3885-8. PubMed ID: 26737142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robotically-driven orthoses exert proximal-to-distal differential recovery on the lower limbs in children with hemiplegia, early after acquired brain injury.
    Beretta E; Molteni E; Biffi E; Morganti R; Avantaggiato P; Strazzer S
    Eur J Paediatr Neurol; 2018 Jul; 22(4):652-661. PubMed ID: 29650492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slacking by the human motor system: computational models and implications for robotic orthoses.
    Reinkensmeyer DJ; Akoner O; Ferris DP; Gordon KE
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2129-32. PubMed ID: 19964581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of cadence regulation on muscle activation patterns during robot assisted gait: a dynamic simulation study.
    Hussain S; Xie SQ; Jamwal PK
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):442-51. PubMed ID: 23193249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of body weight support gait training system using pneumatic Mckibben actuators -control of lower extremity orthosis.
    Mat Dzahir MA; Nobutomo T; Yamamoto SI
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6417-20. PubMed ID: 24111210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of human walking with powered orthosis for designing practical assistive device.
    Uchiyama Y; Nagai C; Obinata G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4816-9. PubMed ID: 23367005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of a pneumatic orthosis for upper extremity stroke rehabilitation.
    Wolbrecht ET; Leavitt J; Reinkensmeyer DJ; Bobrow JE
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2687-93. PubMed ID: 17946132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.