BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 28269406)

  • 1. Metabolic cost of level-ground walking with a robotic transtibial prosthesis combining push-off power and nonlinear damping behaviors: preliminary results.
    Yanggang Feng ; Jinying Zhu ; Qining Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5063-5066. PubMed ID: 28269406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Successful preliminary walking experiments on a transtibial amputee fitted with a powered prosthesis.
    Versluys R; Lenaerts G; Van Damme M; Jonkers I; Desomer A; Vanderborght B; Peeraer L; Van der Perre G; Lefeber D
    Prosthet Orthot Int; 2009 Dec; 33(4):368-77. PubMed ID: 19947821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking.
    Malcolm P; Quesada RE; Caputo JM; Collins SH
    J Neuroeng Rehabil; 2015 Feb; 12():21. PubMed ID: 25889201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining human volitional control with intrinsic controller on robotic prosthesis: A case study on adaptive slope walking.
    Chen B; Wang Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4777-80. PubMed ID: 26737362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing ankle push-off work with a powered prosthesis does not necessarily reduce metabolic rate for transtibial amputees.
    Quesada RE; Caputo JM; Collins SH
    J Biomech; 2016 Oct; 49(14):3452-3459. PubMed ID: 27702444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy flow analysis of amputee walking shows a proximally-directed transfer of energy in intact limbs, compared to a distally-directed transfer in prosthetic limbs at push-off.
    Weinert-Aplin RA; Howard D; Twiste M; Jarvis HL; Bennett AN; Baker RJ
    Med Eng Phys; 2017 Jan; 39():73-82. PubMed ID: 27836575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy-Optimal Human Walking With Feedback-Controlled Robotic Prostheses: A Computational Study.
    Handford ML; Srinivasan M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1773-1782. PubMed ID: 30040647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preliminary Analysis Of Positive Knee Energy Injection In A Transfemoral Amputee Walking With A Powered Prosthesis.
    Hood SA; Lenzi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1821-1824. PubMed ID: 30440749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-inspired design and validation of the Efficient Lockable Spring Ankle (ELSA) prosthesis.
    Heremans F; Vijayakumar S; Bouri M; Dehez B; Ronsse R
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():411-416. PubMed ID: 31374664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking.
    Caputo JM; Collins SH
    Sci Rep; 2014 Dec; 4():7213. PubMed ID: 25467389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volitional control of ankle plantar flexion in a powered transtibial prosthesis during stair-ambulation.
    Kannape OA; Herr HM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1662-5. PubMed ID: 25570293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identify Kinematic Features for Powered Prosthesis Tuning.
    Liu M; Lupiani A; Lee IC; Huang HH
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():565-569. PubMed ID: 31374690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.
    Huang S; Wensman JP; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):573-81. PubMed ID: 26057851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking.
    Kim M; Collins SH
    J Neuroeng Rehabil; 2015 May; 12():43. PubMed ID: 25928176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of prosthetic mass distribution on metabolic costs and walking symmetry.
    Smith JD; Martin PE
    J Appl Biomech; 2013 Jun; 29(3):317-28. PubMed ID: 22977207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noncontact Capacitive Sensing-Based Locomotion Transition Recognition for Amputees With Robotic Transtibial Prostheses.
    Zheng E; Wang Q
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):161-170. PubMed ID: 26890910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stride-to-stride fluctuations in transtibial amputees are not affected by changes in push-off mechanics from using different prostheses.
    Rock CG; Wurdeman SR; Stergiou N; Takahashi KZ
    PLoS One; 2018; 13(10):e0205098. PubMed ID: 30281652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of energy cost in transtibial amputees using "prosthesis" and "crutches without prosthesis" for walking activities.
    Mohanty RK; Lenka P; Equebal A; Kumar R
    Ann Phys Rehabil Med; 2012 May; 55(4):252-62. PubMed ID: 22534430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy costs & performance of transtibial amputees & non-amputees during walking & running.
    Mengelkoch LJ; Kahle JT; Highsmith MJ
    Int J Sports Med; 2014 Dec; 35(14):1223-8. PubMed ID: 25144429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.