These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28269439)

  • 21. PACS workstation design.
    Ho BK; Ratib O; Horii SC
    Comput Med Imaging Graph; 1991; 15(3):147-55. PubMed ID: 1913562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surgeon-robot interface development framework.
    Prokhorenko L; Klimov D; Mishchenkov D; Poduraev Y
    Comput Biol Med; 2020 May; 120():103717. PubMed ID: 32224290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An automatic skill evaluation framework for robotic surgery training.
    Peng W; Xing Y; Liu R; Li J; Zhang Z
    Int J Med Robot; 2019 Feb; 15(1):e1964. PubMed ID: 30281892
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic augmented reality for sensory substitution in robot-assisted surgical systems.
    Akinbiyi T; Reiley CE; Saha S; Burschka D; Hasser CJ; Yuh DD; Okamura AM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():567-70. PubMed ID: 17945986
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surgeon Training in Telerobotic Surgery via a Hardware-in-the-Loop Simulator.
    Li X; Alemzadeh H; Chen D; Kalbarczyk Z; Iyer RK; Kesavadas T
    J Healthc Eng; 2017; 2017():6702919. PubMed ID: 29065635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using end-user feedback to optimize the design of the Versius Surgical System, a new robot-assisted device for use in minimal access surgery.
    Hares L; Roberts P; Marshall K; Slack M
    BMJ Surg Interv Health Technol; 2019; 1(1):e000019. PubMed ID: 35047780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 30 Years of Robotic Surgery.
    Leal Ghezzi T; Campos Corleta O
    World J Surg; 2016 Oct; 40(10):2550-7. PubMed ID: 27177648
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surgeons' display reduced mental effort and workload while performing robotically assisted surgical tasks, when compared to conventional laparoscopy.
    Moore LJ; Wilson MR; McGrath JS; Waine E; Masters RS; Vine SJ
    Surg Endosc; 2015 Sep; 29(9):2553-60. PubMed ID: 25427414
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and characteristics evaluation of a novel teleoperated robotic catheterization system with force feedback for vascular interventional surgery.
    Guo J; Guo S; Yu Y
    Biomed Microdevices; 2016 Oct; 18(5):76. PubMed ID: 27499092
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A surgical robot with augmented reality visualization for stereoelectroencephalography electrode implantation.
    Zeng B; Meng F; Ding H; Wang G
    Int J Comput Assist Radiol Surg; 2017 Aug; 12(8):1355-1368. PubMed ID: 28664416
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surgical Competency for Robot-Assisted Hysterectomy: Development and Validation of a Robotic Hysterectomy Assessment Score (RHAS).
    Frederick PJ; Szender JB; Hussein AA; Kesterson JP; Shelton JA; Anderson TL; Barnabei VM; Guru K
    J Minim Invasive Gynecol; 2017 Jan; 24(1):55-61. PubMed ID: 27780777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electronic imaging workstations: ergonomic issues and the user interface.
    Horii SC
    Radiographics; 1992 Jul; 12(4):773-87. PubMed ID: 1636039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shared control of a medical robot with haptic guidance.
    Xiong L; Chng CB; Chui CK; Yu P; Li Y
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of fatigue accumulated during and after prolonged robotic and laparoscopic surgical methods: a cross-sectional study.
    González-Sánchez M; González-Poveda I; Mera-Velasco S; Cuesta-Vargas AI
    Surg Endosc; 2017 Mar; 31(3):1119-1135. PubMed ID: 27351661
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Present and future developments of the virtual surgery and tele-virtual surgery system].
    Suzuki S; Suzuki N; Hattori A; Hayashibe M; Otake Y; Kobayashi S; Hashizume M
    Nihon Rinsho; 2004 Apr; 62(4):815-23. PubMed ID: 15106354
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of contactless human-machine interface for robotic surgical training.
    Despinoy F; Zemiti N; Forestier G; Sánchez A; Jannin P; Poignet P
    Int J Comput Assist Radiol Surg; 2018 Jan; 13(1):13-24. PubMed ID: 28914409
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparative analysis and guide to virtual reality robotic surgical simulators.
    Julian D; Tanaka A; Mattingly P; Truong M; Perez M; Smith R
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 29125206
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Robotics and augmented reality : Current state of development and future perspectives].
    Feußner H; Ostler D; Wilhelm D
    Chirurg; 2018 Oct; 89(10):760-768. PubMed ID: 30132168
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Comparison of Robotic Simulation Performance on Basic Virtual Reality Skills: Simulator Subjective Versus Objective Assessment Tools.
    Dubin AK; Smith R; Julian D; Tanaka A; Mattingly P
    J Minim Invasive Gynecol; 2017; 24(7):1184-1189. PubMed ID: 28757439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.