These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28269441)

  • 21. I have heard that it is now possible to replace heart valves without surgery. How can that be?
    Heart Advis; 2008 Apr; 11(4):12. PubMed ID: 18693360
    [No Abstract]   [Full Text] [Related]  

  • 22. Is chronic total coronary occlusion a risk factor for long-term outcome after minimally invasive bypass grafting of the left anterior descending artery?
    Holzhey DM; Jacobs S; Walther T; Mohr FW; Falk V
    Ann Thorac Surg; 2010 May; 89(5):1496-501. PubMed ID: 20417767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel force-sensing system for minimally invasive surgical instruments.
    Wee J; Kang M; Francis P; Brooks R; Masotti L; Villavicencio D; Looi T; Azzie G; Drake J; Gerstle JT
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4447-4450. PubMed ID: 29060884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pneumatically driven surgical instrument capable of estimating translational force and grasping force.
    Miyazaki R; Kanno T; Kawashima K
    Int J Med Robot; 2019 Jun; 15(3):e1983. PubMed ID: 30648783
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [da Vinci surgical system].
    Watanabe G; Ishikawa N
    Kyobu Geka; 2014 Jul; 67(8):686-9. PubMed ID: 25138939
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of a novel, ultrathin, tip-bending endoscope in a synthetic force-sensing pancreas with comparison to medical guide wires.
    Chandler JE; Lee CM; Babchanik AP; Melville CD; Saunders MD; Seibel EJ
    Med Devices (Auckl); 2012; 5():1-12. PubMed ID: 23166452
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A 3D virtual reality simulator for training of minimally invasive surgery.
    Mi SH; Hou ZG; Yang F; Xie XL; Bian GB
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():349-52. PubMed ID: 25569969
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery.
    Liu H; Puangmali P; Zbyszewski D; Elhage O; Dasgupta P; Dai JS; Seneviratne L; Althoefer K
    Proc Inst Mech Eng H; 2010; 224(6):751-63. PubMed ID: 20608492
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prevailing Trends in Haptic Feedback Simulation for Minimally Invasive Surgery.
    Pinzon D; Byrns S; Zheng B
    Surg Innov; 2016 Aug; 23(4):415-21. PubMed ID: 26839212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Different mechanical properties in Seldinger guide wires.
    Schummer W
    J Anaesthesiol Clin Pharmacol; 2015; 31(4):505-10. PubMed ID: 26702209
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chronic Total Occlusion Wiring: A State-of-the-Art Guide From The Asia Pacific Chronic Total Occlusion Club.
    Wu EB; Tsuchikane E; Lo S; Lim ST; Ge L; Chen JY; Qian J; Lee SW; Kao HL; Harding SA
    Heart Lung Circ; 2019 Oct; 28(10):1490-1500. PubMed ID: 31128985
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wire-driven flexible manipulator with constrained spherical joints for minimally invasive surgery.
    Ji D; Kang TH; Shim S; Lee S; Hong J
    Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1365-1377. PubMed ID: 30997634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and characteristics evaluation of a novel teleoperated robotic catheterization system with force feedback for vascular interventional surgery.
    Guo J; Guo S; Yu Y
    Biomed Microdevices; 2016 Oct; 18(5):76. PubMed ID: 27499092
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The impact of haptic feedback quality on the performance of teleoperated assembly tasks.
    Wildenbeest JG; Abbink DA; Heemskerk CJ; van der Helm FC; Boessenkool H
    IEEE Trans Haptics; 2013; 6(2):242-52. PubMed ID: 24808307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Minimally invasive cardiac surgery and transesophageal echocardiography.
    Jha AK; Malik V; Hote M
    Ann Card Anaesth; 2014; 17(2):125-32. PubMed ID: 24732611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. External force estimation and implementation in robotically assisted minimally invasive surgery.
    Sang H; Yun J; Monfaredi R; Wilson E; Fooladi H; Cleary K
    Int J Med Robot; 2017 Jun; 13(2):. PubMed ID: 28466997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Endpoint localization in guide wire tracking during endovascular interventions.
    Baert SA; van Walsum T; Niessen WJ
    Acad Radiol; 2003 Dec; 10(12):1424-32. PubMed ID: 14697010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling friction, intrinsic curvature, and rotation of guide wires for simulation of minimally invasive vascular interventions.
    Alderliesten T; Konings MK; Niessen WJ
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):29-38. PubMed ID: 17260853
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CASE 8--2015. Paravertebral Catheter-Based Strategy for Primary Analgesia After Minimally Invasive Cardiac Surgery.
    Esper SA; Bottiger BA; Ginsberg B; Del Rio JM; Glower DD; Gaca JG; Stafford-Smith M; Neuburger PJ; Chaney MA
    J Cardiothorac Vasc Anesth; 2015 Aug; 29(4):1071-80. PubMed ID: 26070694
    [No Abstract]   [Full Text] [Related]  

  • 40. Robotic patch-stabilizer using wire driven mechanism for minimally invasive fetal surgery.
    Zhang B; Kobayashi Y; Chiba T; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5076-9. PubMed ID: 19964857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.