These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 28269460)

  • 1. Monitoring of paces and gaits using binary PIR Sensors with rehabilitation treadmill.
    Jiang Lu ; Ting Zhang ; Qingquan Sun ; Kadiwal S; Unwala I; Fei Hu
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5315-5318. PubMed ID: 28269460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Camera-Based Method for Step Length Symmetry Measurement in Unconstrained Elderly Home Monitoring.
    Cai X; Han G; Song X; Wang J
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2618-2627. PubMed ID: 28092516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ambulatory monitoring of human posture and walking speed using wearable accelerometer sensors.
    Yeoh WS; Pek I; Yong YH; Chen X; Waluyo AB
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5184-7. PubMed ID: 19163885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic Gaits: Gait Analysis With Footstep Sounds.
    Altaf MU; Butko T; Juang BH
    IEEE Trans Biomed Eng; 2015 Aug; 62(8):2001-11. PubMed ID: 25769144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online tracking of the lower body joint angles using IMUs for gait rehabilitation.
    Joukov V; Karg M; Kulic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2310-3. PubMed ID: 25570450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A trial of making reference gait data for simple gait evaluation system with wireless inertial sensors.
    Karasawa Y; Teruyama Y; Watanabe T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3427-30. PubMed ID: 24110465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unobtrusive assessment of walking speed in the home using inexpensive PIR sensors.
    Hayes TL; Hagler S; Austin D; Kaye J; Pavel M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7248-51. PubMed ID: 19965096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time gait cycle parameter recognition using a wearable accelerometry system.
    Yang CC; Hsu YL; Shih KS; Lu JM
    Sensors (Basel); 2011; 11(8):7314-26. PubMed ID: 22164019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evaluation of inertial sensor technology in the discrimination of human gait.
    Little C; Lee JB; James DA; Davison K
    J Sports Sci; 2013; 31(12):1312-8. PubMed ID: 23679899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of the Fitbit One, Garmin Vivofit and Jawbone UP activity tracker in estimation of energy expenditure during treadmill walking and running.
    Price K; Bird SR; Lythgo N; Raj IS; Wong JY; Lynch C
    J Med Eng Technol; 2017 Apr; 41(3):208-215. PubMed ID: 27919170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of Foot Trajectory for Human Gait Phase Detection Using Wireless Ultrasonic Sensor Network.
    Qi Y; Soh CB; Gunawan E; Low KS; Thomas R
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):88-97. PubMed ID: 25769165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of walking features from foot inertial sensing.
    Sabatini AM; Martelloni C; Scapellato S; Cavallo F
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):486-94. PubMed ID: 15759579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer optimization of a minimal biped model discovers walking and running.
    Srinivasan M; Ruina A
    Nature; 2006 Jan; 439(7072):72-5. PubMed ID: 16155564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeatability of spatiotemporal, plantar pressure and force parameters during treadmill walking and running.
    Nüesch C; Overberg JA; Schwameder H; Pagenstert G; Mündermann A
    Gait Posture; 2018 May; 62():117-123. PubMed ID: 29547791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for multiple dynamic climbing gait families.
    Brown JM; Austin MP; Miller BD; Clark JE
    Bioinspir Biomim; 2019 Feb; 14(3):036001. PubMed ID: 30742587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Ambulatory Gait Monitoring System with Activity Classification and Gait Parameter Calculation Based on a Single Foot Inertial Sensor.
    Song M; Kim J
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):885-893. PubMed ID: 28708542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A wireless gait analysis system by digital textile sensors.
    Yang CM; Chou CM; Hu JS; Hung SH; Yang CH; Wu CC; Hsu MY; Yang TL
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7256-60. PubMed ID: 19965098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Walking pattern classification and walking distance estimation algorithms using gait phase information.
    Wang JS; Lin CW; Yang YT; Ho YJ
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2884-92. PubMed ID: 22893370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel approach to ambulatory monitoring: investigation into the quantity and control of everyday walking in patients with subacute stroke.
    Prajapati SK; Gage WH; Brooks D; Black SE; McIlroy WE
    Neurorehabil Neural Repair; 2011 Jan; 25(1):6-14. PubMed ID: 20829413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait phase detection in able-bodied subjects and dementia patients.
    Meng X; Yu H; Tham MP
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4907-10. PubMed ID: 24110835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.