These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28269507)

  • 1. Mining cross-frequency coupling microstates (CFCμstates) from EEG recordings during resting state and mental arithmetic tasks.
    Dimitriadis SI; Yu Sun ; Thakor N; Bezerianos A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5517-5520. PubMed ID: 28269507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genuine cross-frequency coupling networks in human resting-state electrophysiological recordings.
    Siebenhühner F; Wang SH; Arnulfo G; Lampinen A; Nobili L; Palva JM; Palva S
    PLoS Biol; 2020 May; 18(5):e3000685. PubMed ID: 32374723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mining cross-frequency coupling microstates from resting state MEG: An application to mild traumatic brain injury.
    Antonakakis M; Dimitriadis SI; Zervakis M; Papanicolaou AC; Zouridakis G
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5513-5516. PubMed ID: 28269506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directional patterns of cross frequency phase and amplitude coupling within the resting state mimic patterns of fMRI functional connectivity.
    Weaver KE; Wander JD; Ko AL; Casimo K; Grabowski TJ; Ojemann JG; Darvas F
    Neuroimage; 2016 Mar; 128():238-251. PubMed ID: 26747745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-amplitude cross-frequency coupling in EEG-derived cortical time series upon an auditory perception task.
    Papadaniil CD; Kosmidou VE; Tsolaki A; Tsolaki M; Kompatsiaris IY; Hadjileontiadis LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4150-3. PubMed ID: 26737208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complexity of brain activity and connectivity in functional neuroimaging.
    Dimitriadis SI
    J Neurosci Res; 2018 Nov; 96(11):1741-1757. PubMed ID: 30259561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracking Transient Changes in the Neural Frequency Architecture: Harmonic Relationships between Theta and Alpha Peaks Facilitate Cognitive Performance.
    Rodriguez-Larios J; Alaerts K
    J Neurosci; 2019 Aug; 39(32):6291-6298. PubMed ID: 31175211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review.
    Michel CM; Koenig T
    Neuroimage; 2018 Oct; 180(Pt B):577-593. PubMed ID: 29196270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic phase-amplitude coupling on multiple spatial scales during the loss and recovery of consciousness.
    Dong K; Zhang D; Wei Q; Wang G; Huang F; Chen X; Muhammad KG; Sun Y; Liu J
    Comput Biol Med; 2022 Aug; 147():105687. PubMed ID: 35687924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modalities of Thinking: State and Trait Effects on Cross-Frequency Functional Independent Brain Networks.
    Milz P; Pascual-Marqui RD; Lehmann D; Faber PL
    Brain Topogr; 2016 May; 29(3):477-90. PubMed ID: 26838167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.
    Yuan H; Zotev V; Phillips R; Drevets WC; Bodurka J
    Neuroimage; 2012 May; 60(4):2062-72. PubMed ID: 22381593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mining Time-Resolved Functional Brain Graphs to an EEG-Based Chronnectomic Brain Aged Index (CBAI).
    Dimitriadis SI; Salis CI
    Front Hum Neurosci; 2017; 11():423. PubMed ID: 28936168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resting-state connectivity in the prodromal phase of schizophrenia: insights from EEG microstates.
    Andreou C; Faber PL; Leicht G; Schoettle D; Polomac N; Hanganu-Opatz IL; Lehmann D; Mulert C
    Schizophr Res; 2014 Feb; 152(2-3):513-20. PubMed ID: 24389056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parvalbumin Cell Ablation of NMDA-R1 Leads to Altered Phase, But Not Amplitude, of Gamma-Band Cross-Frequency Coupling.
    Port RG; Berman JI; Liu S; Featherstone RE; Roberts TPL; Siegel SJ
    Brain Connect; 2019 Apr; 9(3):263-272. PubMed ID: 30588822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Greater Repertoire and Temporal Variability of Cross-Frequency Coupling (CFC) Modes in Resting-State Neuromagnetic Recordings among Children with Reading Difficulties.
    Dimitriadis SI; Laskaris NA; Simos PG; Fletcher JM; Papanicolaou AC
    Front Hum Neurosci; 2016; 10():163. PubMed ID: 27199698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase-Amplitude Coupling and Long-Range Phase Synchronization Reveal Frontotemporal Interactions during Visual Working Memory.
    Daume J; Gruber T; Engel AK; Friese U
    J Neurosci; 2017 Jan; 37(2):313-322. PubMed ID: 28077711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anterior Thalamic High Frequency Band Activity Is Coupled with Theta Oscillations at Rest.
    Sweeney-Reed CM; Zaehle T; Voges J; Schmitt FC; Buentjen L; Borchardt V; Walter M; Hinrichs H; Heinze HJ; Rugg MD; Knight RT
    Front Hum Neurosci; 2017; 11():358. PubMed ID: 28775684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two intrinsic coupling types for resting-state integration in the human brain.
    Guggisberg AG; Rizk S; Ptak R; Di Pietro M; Saj A; Lazeyras F; Lovblad KO; Schnider A; Pignat JM
    Brain Topogr; 2015 Mar; 28(2):318-29. PubMed ID: 25182143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Resting Spatio-Temporal Dynamics of a Neural Mass Model Using Resting fMRI Connectivity and EEG Microstates.
    Endo H; Hiroe N; Yamashita O
    Front Comput Neurosci; 2019; 13():91. PubMed ID: 32009922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing the fluctuations of dynamic resting-state electrophysiological functional connectivity: reduced neuronal coupling variability in mild cognitive impairment and dementia due to Alzheimer's disease.
    Núñez P; Poza J; Gómez C; Rodríguez-González V; Hillebrand A; Tola-Arribas MA; Cano M; Hornero R
    J Neural Eng; 2019 Sep; 16(5):056030. PubMed ID: 31112938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.