These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 28269513)
1. Short association bundle atlas based on inter-subject clustering from HARDI data. Roman C; Guevara M; Duclap D; Lebois A; Poupon C; Mangin JF; Guevara P Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5545-5549. PubMed ID: 28269513 [TBL] [Abstract][Full Text] [Related]
2. Superficial white matter bundle atlas based on hierarchical fiber clustering over probabilistic tractography data. Román C; Hernández C; Figueroa M; Houenou J; Poupon C; Mangin JF; Guevara P Neuroimage; 2022 Nov; 262():119550. PubMed ID: 35944796 [TBL] [Abstract][Full Text] [Related]
3. Clustering of Whole-Brain White Matter Short Association Bundles Using HARDI Data. Román C; Guevara M; Valenzuela R; Figueroa M; Houenou J; Duclap D; Poupon C; Mangin JF; Guevara P Front Neuroinform; 2017; 11():73. PubMed ID: 29311886 [TBL] [Abstract][Full Text] [Related]
4. Automatic group-wise whole-brain short association fiber bundle labeling based on clustering and cortical surface information. Vázquez A; López-López N; Houenou J; Poupon C; Mangin JF; Ladra S; Guevara P Biomed Eng Online; 2020 Jun; 19(1):42. PubMed ID: 32493483 [TBL] [Abstract][Full Text] [Related]
5. Study of the variability of short association bundles on a HARDI database. Pardo E; Guevara P; Duclap D; Houenou J; Lebois A; Schmitt B; Le Bihan D; Mangin JF; Poupon C Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():77-80. PubMed ID: 24109628 [TBL] [Abstract][Full Text] [Related]
6. Automatic segmentation of short association bundles using a new multi-subject atlas of the left hemisphere fronto-parietal brain connections. Guevara M; Seguel D; Roman C; Duclap D; Lebois A; Le Bihan ; Mangin JF; Poupon C; Guevara P Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():426-9. PubMed ID: 26736290 [TBL] [Abstract][Full Text] [Related]
7. Enhanced Automatic Segmentation for Superficial White Matter Fiber Bundles for Probabilistic Tractography Datasets. Mendoza C; Roman C; Vazquez A; Poupon C; Mangin JF; Hernandez C; Guevara P Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3654-3658. PubMed ID: 34892029 [TBL] [Abstract][Full Text] [Related]
8. Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography. Guevara M; Román C; Houenou J; Duclap D; Poupon C; Mangin JF; Guevara P Neuroimage; 2017 Feb; 147():703-725. PubMed ID: 28034765 [TBL] [Abstract][Full Text] [Related]
9. Creation of a whole brain short association bundle atlas using a hybrid approach. Guevara M; Roman C; Houenou J; Duclap D; Poupon C; Mangin JF; Guevara P Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1115-1119. PubMed ID: 28268521 [TBL] [Abstract][Full Text] [Related]
10. Automated tract extraction via atlas based Adaptive Clustering. Tunç B; Parker WA; Ingalhalikar M; Verma R Neuroimage; 2014 Nov; 102 Pt 2(0 2):596-607. PubMed ID: 25134977 [TBL] [Abstract][Full Text] [Related]
11. Inference of a HARDI fiber bundle atlas using a two-level clustering strategy. Guevara P; Poupon C; Rivière D; Cointepas Y; Marrakchi L; Descoteaux M; Fillard P; Thirion B; Mangin JF Med Image Comput Comput Assist Interv; 2010; 13(Pt 1):550-7. PubMed ID: 20879274 [TBL] [Abstract][Full Text] [Related]
12. Fast Automatic Segmentation of White Matter Streamlines Based on a Multi-Subject Bundle Atlas. Labra N; Guevara P; Duclap D; Houenou J; Poupon C; Mangin JF; Figueroa M Neuroinformatics; 2017 Jan; 15(1):71-86. PubMed ID: 27722821 [TBL] [Abstract][Full Text] [Related]
13. FFClust: Fast fiber clustering for large tractography datasets for a detailed study of brain connectivity. Vázquez A; López-López N; Sánchez A; Houenou J; Poupon C; Mangin JF; Hernández C; Guevara P Neuroimage; 2020 Oct; 220():117070. PubMed ID: 32599269 [TBL] [Abstract][Full Text] [Related]
14. Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas. Guevara P; Duclap D; Poupon C; Marrakchi-Kacem L; Fillard P; Le Bihan D; Leboyer M; Houenou J; Mangin JF Neuroimage; 2012 Jul; 61(4):1083-99. PubMed ID: 22414992 [TBL] [Abstract][Full Text] [Related]
15. Reproducibility of the Structural Connectome Reconstruction across Diffusion Methods. Prčkovska V; Rodrigues P; Puigdellivol Sanchez A; Ramos M; Andorra M; Martinez-Heras E; Falcon C; Prats-Galino A; Villoslada P J Neuroimaging; 2016; 26(1):46-57. PubMed ID: 26464179 [TBL] [Abstract][Full Text] [Related]
16. Unsupervised white matter fiber clustering and tract probability map generation: applications of a Gaussian process framework for white matter fibers. Wassermann D; Bloy L; Kanterakis E; Verma R; Deriche R Neuroimage; 2010 May; 51(1):228-41. PubMed ID: 20079439 [TBL] [Abstract][Full Text] [Related]
17. Robust and efficient linear registration of white-matter fascicles in the space of streamlines. Garyfallidis E; Ocegueda O; Wassermann D; Descoteaux M Neuroimage; 2015 Aug; 117():124-40. PubMed ID: 25987367 [TBL] [Abstract][Full Text] [Related]
18. The effect of the number of fibers in tractography reconstruction of white matter bundles. Roman C; Cardenas N; Poupon C; Mangin JF; Guevara P Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2825-2829. PubMed ID: 31946481 [TBL] [Abstract][Full Text] [Related]
19. High-dimensional white matter atlas generation and group analysis. O'Donnell L; Westin CF Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):243-51. PubMed ID: 17354778 [TBL] [Abstract][Full Text] [Related]
20. The white matter query language: a novel approach for describing human white matter anatomy. Wassermann D; Makris N; Rathi Y; Shenton M; Kikinis R; Kubicki M; Westin CF Brain Struct Funct; 2016 Dec; 221(9):4705-4721. PubMed ID: 26754839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]