These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28269562)

  • 1. Polyimide-based magnetic microactuators for biofouling removal.
    Qi Yang ; Tran Nguyen ; Chunan Liu ; Miller J; Rhoads JF; Linnes J; Hyowon Lee
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5757-5760. PubMed ID: 28269562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-biofouling implantable catheter using thin-film magnetic microactuators.
    Yang Q; Park H; Nguyen TNH; Rhoads JF; Lee A; Bentley RT; Judy JW; Lee H
    Sens Actuators B Chem; 2018 Nov; 273():1694-1704. PubMed ID: 34276138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards smart self-clearing glaucoma drainage device.
    Park H; Raffiee AH; John SWM; Ardekani AM; Lee H
    Microsyst Nanoeng; 2018; 4():35. PubMed ID: 31057923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of magnetic resonance imaging issues for implantable microfabricated magnetic actuators.
    Lee H; Xu Q; Shellock FG; Bergsneider M; Judy JW
    Biomed Microdevices; 2014 Feb; 16(1):153-61. PubMed ID: 24077662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Piezoresistor-Embedded Multifunctional Magnetic Microactuators for Implantable Self-Clearing Catheter.
    Yang Q; Lee A; Bentley RT; Lee H
    IEEE Sens J; 2019 Feb; 19(4):1373-1378. PubMed ID: 31579395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfabricated magnetic actuation device for mechanical conditioning of arrays of 3D microtissues.
    Xu F; Zhao R; Liu AS; Metz T; Shi Y; Bose P; Reich DH
    Lab Chip; 2015 Jun; 15(11):2496-503. PubMed ID: 25959132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-fabricated perforated polymer devices for long-term drug delivery.
    Wu ZJ; Luo Z; Rastogi A; Stavchansky S; Bowman PD; Ho PS
    Biomed Microdevices; 2011 Jun; 13(3):485-91. PubMed ID: 21347826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Microfabricated Magnetic Actuators for Removing Cellular Occlusion.
    Lee SA; Lee H; Pinney JR; Khialeeva E; Bergsneider M; Judy JW
    J Micromech Microeng; 2011 May; 21(5):54006. PubMed ID: 21886945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional evaluation of magnetic microactuators for removing biological accumulation: an in vitro study.
    Lee SA; Pinney JR; Khialeeva E; Bergsneider M; Judy JW
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():947-50. PubMed ID: 19162814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional flash flow microreactor for scale-up production of monodisperse PEG-PLGA nanoparticles.
    Min KI; Im DJ; Lee HJ; Kim DP
    Lab Chip; 2014 Oct; 14(20):3987-92. PubMed ID: 25133684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A polyimide-etalon thin film structure for all-optical high-frequency ultrasound transduction.
    Sheaff C; Ashkenazi S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Oct; 59(10):2254-61. PubMed ID: 23143574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical Evaluation of Unobstructing Magnetic Microactuators for Implantable Ventricular Catheters.
    Lee H; Kolahi K; Bergsneider M; Judy JW
    J Microelectromech Syst; 2014 Aug; 23(4):795-802. PubMed ID: 29151776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic microactuators for MEMS-enabled ventricular catheters for hydrocephalus.
    Lee SA; Vasquez DJ; Bergsneider M; Judy JW
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2494-7. PubMed ID: 17946960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boosting sensitivity of organic vapor detection with silicone block polyimide polymers.
    Potyrailo RA; Sivavec TM
    Anal Chem; 2004 Dec; 76(23):7023-7. PubMed ID: 15571355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymeric microdevices for transdermal and subcutaneous drug delivery.
    Ochoa M; Mousoulis C; Ziaie B
    Adv Drug Deliv Rev; 2012 Nov; 64(14):1603-16. PubMed ID: 23000744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-cost rapid prototyping of liquid crystal polymer based magnetic microactuators for glaucoma drainage devices.
    Hyunsu Park ; John S; Hyowon Lee
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4212-4215. PubMed ID: 28269212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency-controlled wireless shape memory polymer microactuator for drug delivery application.
    Zainal MA; Ahmad A; Mohamed Ali MS
    Biomed Microdevices; 2017 Mar; 19(1):8. PubMed ID: 28124762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique.
    Metz S; Jiguet S; Bertsch A; Renaud P
    Lab Chip; 2004 Apr; 4(2):114-20. PubMed ID: 15052350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple method for preparation of porous polyimide film with an ordered surface based on in situ self-assembly of polyamic acid and silica microspheres.
    Wang C; Wang Q; Wang T
    Langmuir; 2010 Dec; 26(23):18357-61. PubMed ID: 21067141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study on dielectric characteristics of fluorinated polyimide thin film.
    Park SJ; Cho KS; Kim SH
    J Colloid Interface Sci; 2004 Apr; 272(2):384-90. PubMed ID: 15028502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.