These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28269593)

  • 1. Smartphone-based real-time speech enhancement for improving hearing aids speech perception.
    Yu Rao ; Yiya Hao ; Panahi IM; Kehtarnavaz N
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5885-5888. PubMed ID: 28269593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smartphone based real-time super Gaussian single microphone Speech Enhancement to improve intelligibility for hearing aid users using formant information.
    Bhat GS; Reddy CKA; Shankar N; Panahi IMS
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5503-5506. PubMed ID: 30441583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of MVDR beamformer on a Speech Enhancement based Smartphone application for Hearing Aids.
    Shankar N; Kucuk A; Reddy CKA; Bhat GS; Panahi IMS
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():417-420. PubMed ID: 30440422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Supervised Speech Enhancement Method for Smartphone-Based Binaural Hearing Aids.
    Sun Z; Li Y; Jiang H; Chen F; Xie X; Wang Z
    IEEE Trans Biomed Circuits Syst; 2020 Oct; 14(5):951-960. PubMed ID: 32310781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two microphones spectral-coherence based speech enhancement for hearing aids using smartphone as an assistive device.
    Reddy CK; Yiya Hao ; Panahi I
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3670-3673. PubMed ID: 28269090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient two-microphone speech enhancement using basic recurrent neural network cell for hearing and hearing aids.
    Shankar N; Bhat GS; Panahi IMS
    J Acoust Soc Am; 2020 Jul; 148(1):389. PubMed ID: 32752751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smartphone-based noise adaptive speech enhancement for hearing aid applications.
    Panahi I; Kehtarnavaz N; Thibodeau L
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():85-88. PubMed ID: 28268287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Objective measures of perceptual quality for predicting speech intelligibility in sensorineural hearing loss.
    Chiaramello E; Moriconi S; Tognola G
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5577-80. PubMed ID: 26737556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speech quality evaluation of a sparse coding shrinkage noise reduction algorithm with normal hearing and hearing impaired listeners.
    Sang J; Hu H; Zheng C; Li G; Lutman ME; Bleeck S
    Hear Res; 2015 Sep; 327():175-85. PubMed ID: 26232529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameter-based binaural hearing aid algorithms to improve speech intelligibility and localization in complex environments.
    Young Woo Lee ; Moore BC
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5585-8. PubMed ID: 26737558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time dual-channel speech enhancement by VAD assisted MVDR beamformer for hearing aid applications using smartphone.
    Shankar N; Bhat GS; Panahi IMS
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():952-955. PubMed ID: 33018142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing Binaural Pre-processing Strategies III: Speech Intelligibility of Normal-Hearing and Hearing-Impaired Listeners.
    Völker C; Warzybok A; Ernst SM
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated machine learning based speech classification for hearing aid applications and its real-time implementation on smartphone.
    Bhat GS; Shankar N; Panahi IMS
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():956-959. PubMed ID: 33018143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the sparse coding shrinkage noise reduction algorithm in normal hearing and hearing impaired listeners.
    Sang J; Hu H; Zheng C; Li G; Lutman ME; Bleeck S
    Hear Res; 2014 Apr; 310():36-47. PubMed ID: 24495441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smartphone-based single-channel speech enhancement application for hearing aids.
    Shankar N; Bhat GS; Panahi IMS; Tittle S; Thibodeau LM
    J Acoust Soc Am; 2021 Sep; 150(3):1663. PubMed ID: 34598612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship Among Signal Fidelity, Hearing Loss, and Working Memory for Digital Noise Suppression.
    Arehart K; Souza P; Kates J; Lunner T; Pedersen MS
    Ear Hear; 2015; 36(5):505-16. PubMed ID: 25985016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time multiband dynamic compression and noise reduction for binaural hearing aids.
    Kollmeier B; Peissig J; Hohmann V
    J Rehabil Res Dev; 1993; 30(1):82-94. PubMed ID: 8263832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An examination of the practicality of the simplex procedure.
    Preminger JE; Neuman AC; Bakke MH; Walters D; Levitt H
    Ear Hear; 2000 Jun; 21(3):177-93. PubMed ID: 10890726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formant Frequency-based Speech Enhancement Technique to improve Intelligibility for hearing aid users with smartphone as an assistive device.
    Bhat GS; Shankar N; Reddy CKA; Panahi IMS
    Health Innov Point Care Conf; 2017 Nov; 2017():32-35. PubMed ID: 32705090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of model-based versus non-parametric monaural noise-reduction approaches for hearing aids.
    Harlander N; Rosenkranz T; Hohmann V
    Int J Audiol; 2012 Aug; 51(8):627-39. PubMed ID: 22642311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.