These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28269629)

  • 1. Hip joint geometry effects on cartilage contact stresses during a gait cycle.
    Hui-Hui Wu ; Dong Wang ; An-Bang Ma ; Dong-Yun Gu
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6038-6041. PubMed ID: 28269629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of non-spherical hip joint cartilage surface to hip joint contact stress.
    Gu DY; Hu F; Wei JH; Dai KR; Chen YZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8166-9. PubMed ID: 22256237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of finite element predictions of cartilage contact pressure in the human hip joint.
    Anderson AE; Ellis BJ; Maas SA; Peters CL; Weiss JA
    J Biomech Eng; 2008 Oct; 130(5):051008. PubMed ID: 19045515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of idealized joint geometry on finite element predictions of cartilage contact stresses in the hip.
    Anderson AE; Ellis BJ; Maas SA; Weiss JA
    J Biomech; 2010 May; 43(7):1351-7. PubMed ID: 20176359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress distribution on the hip joint articular surface during gait.
    Ipavec M; Iglic A; Iglic VK; Srakar F
    Pflugers Arch; 1996; 431(6 Suppl 2):R275-6. PubMed ID: 8739371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in hip joint contact stress during a gait cycle based on the individualized modeling method of "gait-musculoskeletal system-finite element".
    Xiong B; Yang P; Lin T; Xu J; Xie Y; Guo Y; Liu C; Zhou Q; Lai Q; He W; Wei Q; Zhang Q
    J Orthop Surg Res; 2022 May; 17(1):267. PubMed ID: 35568957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale modelling for investigating the long-term time-dependent biphasic behaviour of the articular cartilage in the natural hip joint.
    Hua X; Shu L; Li J
    Biomech Model Mechanobiol; 2022 Aug; 21(4):1145-1155. PubMed ID: 35482145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative determination of joint incongruity and pressure distribution during simulated gait and cartilage thickness in the human hip joint.
    von Eisenhart R; Adam C; Steinlechner M; Müller-Gerbl M; Eckstein F
    J Orthop Res; 1999 Jul; 17(4):532-9. PubMed ID: 10459759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new discrete element analysis method for predicting hip joint contact stresses.
    Abraham CL; Maas SA; Weiss JA; Ellis BJ; Peters CL; Anderson AE
    J Biomech; 2013 Apr; 46(6):1121-7. PubMed ID: 23453394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-pelvis characterisation of articular cartilage geometry.
    Gillard FC; Dickinson AS; Schneider U; Taylor AC; Browne M
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1255-64. PubMed ID: 23966364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of incongruity, contact areas and cartilage thickness in the human hip joint.
    Eckstein F; von Eisenhart-Rothe R; Landgraf J; Adam C; Loehe F; Müller-Gerbl M; Putz R
    Acta Anat (Basel); 1997; 158(3):192-204. PubMed ID: 9394956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of hip anatomical variations on the cartilage stress: a finite element analysis towards the biomechanical exploration of the factors that may explain primary hip arthritis in morphologically normal subjects.
    Sánchez Egea AJ; Valera M; Parraga Quiroga JM; Proubasta I; Noailly J; Lacroix D
    Clin Biomech (Bristol, Avon); 2014 Apr; 29(4):444-50. PubMed ID: 24530154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometric parameterisation of pelvic bone and cartilage in contact analysis of the natural hip: an initial study.
    Hua X; Li J; Wilcox RK; Fisher J; Jones AC
    Proc Inst Mech Eng H; 2015 Aug; 229(8):570-80. PubMed ID: 26112348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale biomechanics of the biphasic articular cartilage in the natural hip joint during routine activities.
    Hua X; Li J; De Pieri E; Ferguson SJ
    Comput Methods Programs Biomed; 2022 Mar; 215():106606. PubMed ID: 35016083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: a finite element analysis.
    Chegini S; Beck M; Ferguson SJ
    J Orthop Res; 2009 Feb; 27(2):195-201. PubMed ID: 18752280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element analysis of a hemi-pelvis: the effect of inclusion of cartilage layer on acetabular stresses and strain.
    Ghosh R; Pal B; Ghosh D; Gupta S
    Comput Methods Biomech Biomed Engin; 2015; 18(7):697-710. PubMed ID: 24156480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cartilage stresses in the human hip joint.
    Macirowski T; Tepic S; Mann RW
    J Biomech Eng; 1994 Feb; 116(1):10-8. PubMed ID: 8189704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrete element and finite element methods provide similar estimations for hip joint contact mechanics during walking gait.
    Li M; Venäläinen MS; Chandra SS; Patel R; Fripp J; Engstrom C; Korhonen RK; Töyräs J; Crozier S
    J Biomech; 2021 Jan; 115():110163. PubMed ID: 33338974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of a gait cycle loading into healthy and meniscectomised knee joint models with fibril-reinforced articular cartilage.
    Mononen ME; Jurvelin JS; Korhonen RK
    Comput Methods Biomech Biomed Engin; 2015; 18(2):141-52. PubMed ID: 23570549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contact pressures in the human hip joint measured in vivo.
    Hodge WA; Fijan RS; Carlson KL; Burgess RG; Harris WH; Mann RW
    Proc Natl Acad Sci U S A; 1986 May; 83(9):2879-83. PubMed ID: 3458248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.