These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28269656)

  • 1. Automated classification of pathological gait after stroke using ubiquitous sensing technology.
    Dolatabadi E; Taati B; Mihailidis A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6150-6153. PubMed ID: 28269656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Automated Classification of Pathological Gait Using Unobtrusive Sensing Technology.
    Dolatabadi E; Taati B; Mihailidis A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2336-2346. PubMed ID: 28792901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated classification of neurological disorders of gait using spatio-temporal gait parameters.
    Pradhan C; Wuehr M; Akrami F; Neuhaeusser M; Huth S; Brandt T; Jahn K; Schniepp R
    J Electromyogr Kinesiol; 2015 Apr; 25(2):413-22. PubMed ID: 25725811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait Analysis for Post-Stroke Hemiparetic Patient by Multi-Features Fusion Method.
    Li M; Tian S; Sun L; Chen X
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30978981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic classification of pathological gait patterns using ground reaction forces and machine learning algorithms.
    Alaqtash M; Sarkodie-Gyan T; Yu H; Fuentes O; Brower R; Abdelgawad A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():453-7. PubMed ID: 22254346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of gait and posture classification using movement sensors in individuals with mobility impairment after stroke.
    Pohl J; Ryser A; Veerbeek JM; Verheyden G; Vogt JE; Luft AR; Easthope CA
    Front Physiol; 2022; 13():933987. PubMed ID: 36225292
    [No Abstract]   [Full Text] [Related]  

  • 7. Selection of clinical features for pattern recognition applied to gait analysis.
    Altilio R; Paoloni M; Panella M
    Med Biol Eng Comput; 2017 Apr; 55(4):685-695. PubMed ID: 27435068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Machine Learning Framework for Gait Classification Using Inertial Sensors: Application to Elderly, Post-Stroke and Huntington's Disease Patients.
    Mannini A; Trojaniello D; Cereatti A; Sabatini AM
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26805847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. General tensor discriminant analysis and gabor features for gait recognition.
    Tao D; Li X; Wu X; Maybank SJ
    IEEE Trans Pattern Anal Mach Intell; 2007 Oct; 29(10):1700-15. PubMed ID: 17699917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Normalization and possibility of classification analysis using the optimal warping paths of dynamic time warping in gait analysis.
    Lee HS
    J Exerc Rehabil; 2023 Feb; 19(1):85-91. PubMed ID: 36910677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated evaluation of physical therapy exercises using multi-template dynamic time warping on wearable sensor signals.
    Yurtman A; Barshan B
    Comput Methods Programs Biomed; 2014 Nov; 117(2):189-207. PubMed ID: 25168775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subject recognition based on ground reaction force measurements of gait signals.
    Moustakidis SP; Theocharis JB; Giakas G
    IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1476-85. PubMed ID: 19022720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human gait recognition via deterministic learning.
    Zeng W; Wang C
    Neural Netw; 2012 Nov; 35():92-102. PubMed ID: 22982093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic classification of asymptomatic and osteoarthritis knee gait patterns using kinematic data features and the nearest neighbor classifier.
    Mezghani N; Husse S; Boivin K; Turcot K; Aissaoui R; Hagemeister N; de Guise JA
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1230-2. PubMed ID: 18334419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-Time Classification of Patients with Balance Disorders vs. Normal Subjects Using a Low-Cost Small Wireless Wearable Gait Sensor.
    Nukala BT; Nakano T; Rodriguez A; Tsay J; Lopez J; Nguyen TQ; Zupancic S; Lie DY
    Biosensors (Basel); 2016 Nov; 6(4):. PubMed ID: 27916817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diagnosing health problems from gait patterns of elderly.
    Pogorelc B; Gams M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2238-41. PubMed ID: 21096794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A study of gait recognition based on kinematics and kinetics parameters].
    Guo Z; Ding H; Wang G; Ding H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Feb; 22(1):1-4. PubMed ID: 15762103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting compensatory movements of stroke survivors using pressure distribution data and machine learning algorithms.
    Cai S; Li G; Zhang X; Huang S; Zheng H; Ma K; Xie L
    J Neuroeng Rehabil; 2019 Nov; 16(1):131. PubMed ID: 31684970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PCA-based SVM for automatic recognition of gait patterns.
    Wu J; Wang J
    J Appl Biomech; 2008 Feb; 24(1):83-7. PubMed ID: 18309187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic recognition of gait patterns exhibiting patellofemoral pain syndrome using a support vector machine approach.
    Lai DT; Levinger P; Begg RK; Gilleard WL; Palaniswami M
    IEEE Trans Inf Technol Biomed; 2009 Sep; 13(5):810-7. PubMed ID: 19447723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.