These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28269656)

  • 21.
    Raeisi Shahraki H; Pourahmad S; Zare N
    Biomed Res Int; 2017; 2017():7560807. PubMed ID: 29376076
    [No Abstract]   [Full Text] [Related]  

  • 22. Fusion of sparse representation and dictionary matching for identification of humans in uncontrolled environment.
    Fernandes SL; Bala GJ
    Comput Biol Med; 2016 Sep; 76():215-37. PubMed ID: 27498411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Matching shape sequences in video with applications in human movement analysis.
    Veeraraghavan A; Roy-Chowdhury AK; Chellappa R
    IEEE Trans Pattern Anal Mach Intell; 2005 Dec; 27(12):1896-909. PubMed ID: 16355658
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Support vector machines for automated gait classification.
    Begg RK; Palaniswami M; Owen B
    IEEE Trans Biomed Eng; 2005 May; 52(5):828-38. PubMed ID: 15887532
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flat foot functional evaluation using pattern recognition of ground reaction data.
    Bertani A; Cappello A; Benedetti MG; Simoncini L; Catani F
    Clin Biomech (Bristol, Avon); 1999 Aug; 14(7):484-93. PubMed ID: 10521632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reliability and comparison of Kinect-based methods for estimating spatiotemporal gait parameters of healthy and post-stroke individuals.
    Latorre J; Llorens R; Colomer C; Alcañiz M
    J Biomech; 2018 Apr; 72():268-273. PubMed ID: 29567306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Classifying Changes in Amputee Gait following Physiotherapy Using Machine Learning and Continuous Inertial Sensor Signals.
    Ng G; Andrysek J
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772451
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural networks for detection and classification of walking pattern changes due to ageing.
    Begg R; Kamruzzaman J
    Australas Phys Eng Sci Med; 2006 Jun; 29(2):188-95. PubMed ID: 16845924
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Novel Graph Constructor for Semisupervised Discriminant Analysis: Combined Low-Rank and
    Zu B; Xia K; Pan Y; Niu W
    Comput Intell Neurosci; 2017; 2017():9290230. PubMed ID: 28316616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gait recognition using radon transform and linear discriminant analysis.
    Boulgouris NV; Chi ZX
    IEEE Trans Image Process; 2007 Mar; 16(3):731-40. PubMed ID: 17357733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Classification of Normal and Pathological Gait in Young Children Based on Foot Pressure Data.
    Guo G; Guffey K; Chen W; Pergami P
    Neuroinformatics; 2017 Jan; 15(1):13-24. PubMed ID: 27585914
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Bayesian framework for extracting human gait using strong prior knowledge.
    Zhou Z; Prügel-Bennett A; Damper RI
    IEEE Trans Pattern Anal Mach Intell; 2006 Nov; 28(11):1738-52. PubMed ID: 17063680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AVNM: A Voting based Novel Mathematical Rule for Image Classification.
    Vidyarthi A; Mittal N
    Comput Methods Programs Biomed; 2016 Dec; 137():195-201. PubMed ID: 28110724
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Action and gait recognition from recovered 3-D human joints.
    Gu J; Ding X; Wang S; Wu Y
    IEEE Trans Syst Man Cybern B Cybern; 2010 Aug; 40(4):1021-33. PubMed ID: 20388599
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison of algorithms for body-worn sensor-based spatiotemporal gait parameters to the GAITRite electronic walkway.
    Greene BR; Foran TG; McGrath D; Doheny EP; Burns A; Caulfield B
    J Appl Biomech; 2012 Jul; 28(3):349-55. PubMed ID: 22087019
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of gait segmentation methods for wearable foot pressure sensors.
    Crea S; De Rossi SM; Donati M; Reberšek P; Novak D; Vitiello N; Lenzi T; Podobnik J; Munih M; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5018-21. PubMed ID: 23367055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-Linear Template-Based Approach for the Study of Locomotion.
    Dot T; Quijoux F; Oudre L; Vienne-Jumeau A; Moreau A; Vidal PP; Ricard D
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32235667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling and classification of gait patterns between anterior cruciate ligament deficient and intact knees based on phase space reconstruction, Euclidean distance and neural networks.
    Wu W; Zeng W; Ma L; Yuan C; Zhang Y
    Biomed Eng Online; 2018 Nov; 17(1):165. PubMed ID: 30382920
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of vision based multiview gait recognition system with MMUGait database.
    Ng H; Tan WH; Abdullah J; Tong HL
    ScientificWorldJournal; 2014; 2014():376569. PubMed ID: 25143972
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of dynamic time warping algorithm for pattern similarity of gait.
    Lee HS
    J Exerc Rehabil; 2019 Aug; 15(4):526-530. PubMed ID: 31523672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.