These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28269666)

  • 1. Principal component analysis can decrease neural networks performance for incipient falls detection: A preliminary study with hands and feet accelerations.
    Artoni F; Martelli D; Monaco V; Micera S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6194-6197. PubMed ID: 28269666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsupervised machine-learning method for improving the performance of ambulatory fall-detection systems.
    Yuwono M; Moulton BD; Su SW; Celler BG; Nguyen HT
    Biomed Eng Online; 2012 Feb; 11():9. PubMed ID: 22336100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Performance of Post-Fall Detection Using the Cross-Dataset: Feature Vectors, Classifiers and Processing Conditions.
    Koo B; Kim J; Nam Y; Kim Y
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-impact fall detection: optimal sensor positioning based on a machine learning paradigm.
    Martelli D; Artoni F; Monaco V; Sabatini AM; Micera S
    PLoS One; 2014; 9(3):e92037. PubMed ID: 24658093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Health status monitoring for ICU patients based on locally weighted principal component analysis.
    Ding Y; Ma X; Wang Y
    Comput Methods Programs Biomed; 2018 Mar; 156():61-71. PubMed ID: 29428077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Strategy to Predict and Detect Falls Using Wearable Sensors.
    Ribeiro NF; André J; Costa L; Santos CP
    J Med Syst; 2019 Apr; 43(5):134. PubMed ID: 30949770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic fall detection using region-based convolutional neural network.
    Hader GK; Ben Ismail MM; Bchir O
    Int J Inj Contr Saf Promot; 2020 Dec; 27(4):546-557. PubMed ID: 32930063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerometer and Camera-Based Strategy for Improved Human Fall Detection.
    Zerrouki N; Harrou F; Sun Y; Houacine A
    J Med Syst; 2016 Dec; 40(12):284. PubMed ID: 27796842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of simple thresholds for accelerometry-based parameters for fall detection.
    Kangas M; Konttila A; Winblad I; Jämsä T
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1367-70. PubMed ID: 18002218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cross-dataset deep learning-based classifier for people fall detection and identification.
    Delgado-Escaño R; Castro FM; Cózar JR; Marín-Jiménez MJ; Guil N; Casilari E
    Comput Methods Programs Biomed; 2020 Feb; 184():105265. PubMed ID: 31881399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fall Detection Using Smartphone Audio Features.
    Cheffena M
    IEEE J Biomed Health Inform; 2016 Jul; 20(4):1073-80. PubMed ID: 25915965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The detection of age groups by dynamic gait outcomes using machine learning approaches.
    Zhou Y; Romijnders R; Hansen C; Campen JV; Maetzler W; Hortobágyi T; Lamoth CJC
    Sci Rep; 2020 Mar; 10(1):4426. PubMed ID: 32157168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting falls as novelties in acceleration patterns acquired with smartphones.
    Medrano C; Igual R; Plaza I; Castro M
    PLoS One; 2014; 9(4):e94811. PubMed ID: 24736626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depth-based human fall detection via shape features and improved extreme learning machine.
    Ma X; Wang H; Xue B; Zhou M; Ji B; Li Y
    IEEE J Biomed Health Inform; 2014 Nov; 18(6):1915-22. PubMed ID: 25375688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can we make a carpet smart enough to detect falls?
    Muheidat F; Tyrer HW
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5356-5359. PubMed ID: 28269470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fall Detection for the Elderly Based on 3-Axis Accelerometer and Depth Sensor Fusion with Random Forest Classifier.
    Kim K; Yun G; Park SK; Kim DH
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4611-4614. PubMed ID: 31946891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploration and comparison of the pre-impact lead time of active and passive falls based on inertial sensors.
    Liang D; Ivanov K; Li H; Ning Y; Zhang Q; Wang L; Zhao G
    Biomed Mater Eng; 2014; 24(1):279-88. PubMed ID: 24211908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. System Design for Emergency Alert Triggered by Falls Using Convolutional Neural Networks.
    Taramasco C; Lazo Y; Rodenas T; Fuentes P; Martínez F; Demongeot J
    J Med Syst; 2020 Jan; 44(2):50. PubMed ID: 31907688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the autonomic nervous system for fall detection.
    Nocua R; Noury N; Gehin C; Dittmar A; McAdams E
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3225-8. PubMed ID: 19964061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radar Sensing for Activity Classification in Elderly People Exploiting Micro-Doppler Signatures Using Machine Learning.
    Taylor W; Dashtipour K; Shah SA; Hussain A; Abbasi QH; Imran MA
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34199814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.