These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28269666)

  • 21. Fall detection algorithms for real-world falls harvested from lumbar sensors in the elderly population: a machine learning approach.
    Bourke AK; Klenk J; Schwickert L; Aminian K; Ihlen EA; Mellone S; Helbostad JL; Chiari L; Becker C
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3712-3715. PubMed ID: 28269098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fall-detection solution for mobile platforms using accelerometer and gyroscope data.
    De Cillisy F; De Simioy F; Guidoy F; Incalzi RA; Setolay R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3727-30. PubMed ID: 26737103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of foot clearance parameters as a precursor to forecasting the risk of tripping and falling.
    Lai DT; Taylor SB; Begg RK
    Hum Mov Sci; 2012 Apr; 31(2):271-83. PubMed ID: 21035220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wearable Fall Detector Using Recurrent Neural Networks.
    Luna-Perejón F; Domínguez-Morales MJ; Civit-Balcells A
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31717442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advances in blind source separation (BSS) and independent component analysis (ICA) for nonlinear mixtures.
    Jutten C; Karhunen J
    Int J Neural Syst; 2004 Oct; 14(5):267-92. PubMed ID: 15593377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm.
    Bourke AK; O'Brien JV; Lyons GM
    Gait Posture; 2007 Jul; 26(2):194-9. PubMed ID: 17101272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Covariance matrix based fall detection from multiple wearable sensors.
    Boutellaa E; Kerdjidj O; Ghanem K
    J Biomed Inform; 2019 Jun; 94():103189. PubMed ID: 31029654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Portable preimpact fall detector with inertial sensors.
    Wu G; Xue S
    IEEE Trans Neural Syst Rehabil Eng; 2008 Apr; 16(2):178-83. PubMed ID: 18403286
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combining novelty detectors to improve accelerometer-based fall detection.
    Medrano C; Igual R; García-Magariño I; Plaza I; Azuara G
    Med Biol Eng Comput; 2017 Oct; 55(10):1849-1858. PubMed ID: 28251444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Speed estimation from a tri-axial accelerometer using neural networks.
    Song Y; Shin S; Kim S; Lee D; Lee KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3224-7. PubMed ID: 18002682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selecting Power-Efficient Signal Features for a Low-Power Fall Detector.
    Wang C; Redmond SJ; Lu W; Stevens MC; Lord SR; Lovell NH
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2729-2736. PubMed ID: 28212076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Study on the Application of Convolutional Neural Networks to Fall Detection Evaluated with Multiple Public Datasets.
    Casilari E; Lora-Rivera R; García-Lagos F
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32155936
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Triaxial accelerometer-based fall detection method using a self-constructing cascade-AdaBoost-SVM classifier.
    Cheng WC; Jhan DM
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):411-9. PubMed ID: 24235113
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A class of neural networks for independent component analysis.
    Karhunen J; Oja E; Wang L; Vigario R; Joutsensalo J
    IEEE Trans Neural Netw; 1997; 8(3):486-504. PubMed ID: 18255654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fall classification by machine learning using mobile phones.
    Albert MV; Kording K; Herrmann M; Jayaraman A
    PLoS One; 2012; 7(5):e36556. PubMed ID: 22586477
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A vision-based approach for fall detection using multiple cameras and convolutional neural networks: A case study using the UP-Fall detection dataset.
    Espinosa R; Ponce H; Gutiérrez S; Martínez-Villaseñor L; Brieva J; Moya-Albor E
    Comput Biol Med; 2019 Dec; 115():103520. PubMed ID: 31698242
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated remote fall detection using impact features from video and audio.
    Geertsema EE; Visser GH; Viergever MA; Kalitzin SN
    J Biomech; 2019 May; 88():25-32. PubMed ID: 30922611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Towards unobtrusive in vivo monitoring of patients prone to falling.
    Karel JM; Senden R; Janssen JE; Savelberg HM; Grimm B; Heyligers IC; Peeters R; Meijer K
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5018-21. PubMed ID: 21096022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials.
    Aziz O; Musngi M; Park EJ; Mori G; Robinovitch SN
    Med Biol Eng Comput; 2017 Jan; 55(1):45-55. PubMed ID: 27106749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.