These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 28269704)

  • 21. Physiological properties of brain-machine interface input signals.
    Slutzky MW; Flint RD
    J Neurophysiol; 2017 Aug; 118(2):1329-1343. PubMed ID: 28615329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Subject-specific modulation of local field potential spectral power during brain-machine interface control in primates.
    So K; Dangi S; Orsborn AL; Gastpar MC; Carmena JM
    J Neural Eng; 2014 Apr; 11(2):026002. PubMed ID: 24503623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decoding Speech With Integrated Hybrid Signals Recorded From the Human Ventral Motor Cortex.
    Ibayashi K; Kunii N; Matsuo T; Ishishita Y; Shimada S; Kawai K; Saito N
    Front Neurosci; 2018; 12():221. PubMed ID: 29674950
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Switching Markov decoders for asynchronous trajectory reconstruction from ECoG signals in monkeys for BCI applications.
    Schaeffer MC; Aksenova T
    J Physiol Paris; 2016 Nov; 110(4 Pt A):348-360. PubMed ID: 28288824
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A tensor-product-kernel framework for multiscale neural activity decoding and control.
    Li L; Brockmeier AJ; Choi JS; Francis JT; Sanchez JC; Príncipe JC
    Comput Intell Neurosci; 2014; 2014():870160. PubMed ID: 24829569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dimensionality Reduction of Local Field Potential Features with Convolution Neural Network in Neural Decoding: A Pilot Study.
    Ran X; Zhang Y; Shen C; Yvert B; Chen W; Zhang S
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1047-1050. PubMed ID: 34891468
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accurate decoding of reaching movements from field potentials in the absence of spikes.
    Flint RD; Lindberg EW; Jordan LR; Miller LE; Slutzky MW
    J Neural Eng; 2012 Aug; 9(4):046006. PubMed ID: 22733013
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimating Multiscale Direct Causality Graphs in Neural Spike-Field Networks.
    Wang C; Shanechi MM
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):857-866. PubMed ID: 30932842
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sparse model-based estimation of functional dependence in high-dimensional field and spike multiscale networks.
    Bighamian R; Wong YT; Pesaran B; Shanechi MM
    J Neural Eng; 2019 Sep; 16(5):056022. PubMed ID: 31100751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regularized Kalman filter for brain-computer interfaces using local field potential signals.
    Asgharpour M; Foodeh R; Daliri MR
    J Neurosci Methods; 2021 Feb; 350():109022. PubMed ID: 33290753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling and inference methods for switching regime-dependent dynamical systems with multiscale neural observations.
    Song CY; Hsieh HL; Pesaran B; Shanechi MM
    J Neural Eng; 2022 Nov; 19(6):. PubMed ID: 36261030
    [No Abstract]   [Full Text] [Related]  

  • 32. Spike-field Granger causality for hybrid neural data analysis.
    Gong X; Li W; Liang H
    J Neurophysiol; 2019 Aug; 122(2):809-822. PubMed ID: 31242046
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long-term, stable behavior of local field potentials during brain machine interface use.
    Scheid MR; Flint RD; Wright ZA; Slutzky MW
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():307-10. PubMed ID: 24109685
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generalized neural decoders for transfer learning across participants and recording modalities.
    Peterson SM; Steine-Hanson Z; Davis N; Rao RPN; Brunton BW
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33418552
    [No Abstract]   [Full Text] [Related]  

  • 35. Leveraging neural dynamics to extend functional lifetime of brain-machine interfaces.
    Kao JC; Ryu SI; Shenoy KV
    Sci Rep; 2017 Aug; 7(1):7395. PubMed ID: 28784984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Motor cortical decoding performance depends on controlled system order.
    Matlack C; Haddock A; Moritz CT; Chizeck HJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2553-6. PubMed ID: 25570511
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gesture Decoding Using ECoG Signals from Human Sensorimotor Cortex: A Pilot Study.
    Li Y; Zhang S; Jin Y; Cai B; Controzzi M; Zhu J; Zhang J; Zheng X
    Behav Neurol; 2017; 2017():3435686. PubMed ID: 29104374
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces.
    Li S; Li J; Li Z
    Front Neurosci; 2016; 10():587. PubMed ID: 28066170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An adaptive closed-loop ECoG decoder for long-term and stable bimanual control of an exoskeleton by a tetraplegic.
    Moly A; Costecalde T; Martel F; Martin M; Larzabal C; Karakas S; Verney A; Charvet G; Chabardes S; Benabid AL; Aksenova T
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35234665
    [No Abstract]   [Full Text] [Related]  

  • 40. Impact of referencing scheme on decoding performance of LFP-based brain-machine interface.
    Ahmadi N; Constandinou TG; Bouganis CS
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33242850
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.