These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28269705)

  • 21. Pattern recognition control of multifunction myoelectric prostheses by patients with congenital transradial limb defects: a preliminary study.
    Kryger M; Schultz AE; Kuiken T
    Prosthet Orthot Int; 2011 Dec; 35(4):395-401. PubMed ID: 21960053
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeted muscle reinnervation and prosthetic rehabilitation after limb loss.
    Mioton LM; Dumanian GA
    J Surg Oncol; 2018 Oct; 118(5):807-814. PubMed ID: 30261116
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous Control of 2DOF Upper-Limb Prosthesis With Body Compensations-Based Control: A Multiple Cases Study.
    Legrand M; Marchand C; Richer F; Touillet A; Martinet N; Paysant J; Morel G; Jarrasse N
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1745-1754. PubMed ID: 35749322
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Myoelectric Pattern Recognition Outperforms Direct Control for Transhumeral Amputees with Targeted Muscle Reinnervation: A Randomized Clinical Trial.
    Hargrove LJ; Miller LA; Turner K; Kuiken TA
    Sci Rep; 2017 Oct; 7(1):13840. PubMed ID: 29062019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robotic leg control with EMG decoding in an amputee with nerve transfers.
    Hargrove LJ; Simon AM; Young AJ; Lipschutz RD; Finucane SB; Smith DG; Kuiken TA
    N Engl J Med; 2013 Sep; 369(13):1237-42. PubMed ID: 24066744
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The development of a myoelectric training tool for above-elbow amputees.
    Dawson MR; Fahimi F; Carey JP
    Open Biomed Eng J; 2012; 6():5-15. PubMed ID: 22383905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Motor control and learning with lower-limb myoelectric control in amputees.
    Alcaide-Aguirre RE; Morgenroth DC; Ferris DP
    J Rehabil Res Dev; 2013; 50(5):687-98. PubMed ID: 24013916
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protocol for site selection and movement assessment for the myoelectric control of a multi-functional upper-limb prosthesis.
    Al-Timemy AH; Escudero J; Bugmann G; Outram N
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5817-20. PubMed ID: 24111061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Myoelectric control of robotic lower limb prostheses: a review of electromyography interfaces, control paradigms, challenges and future directions.
    Fleming A; Stafford N; Huang S; Hu X; Ferris DP; Huang HH
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34229307
    [No Abstract]   [Full Text] [Related]  

  • 30. Toward the development of a neural interface for lower limb prosthesis control.
    Hargrove LJ; Huang H; Schultz AE; Lock BA; Lipschutz R; Kuiken TA
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2111-4. PubMed ID: 19964782
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding Limb Position and External Load Effects on Real-Time Pattern Recognition Control in Amputees.
    Teh Y; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1605-1613. PubMed ID: 32396094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A strategy for minimizing the effect of misclassifications during real time pattern recognition myoelectric control.
    Simon AM; Hargrove LJ; Lock BA; Kuiken TA
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1327-30. PubMed ID: 19964513
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Online myoelectric control of a dexterous hand prosthesis by transradial amputees.
    Cipriani C; Antfolk C; Controzzi M; Lundborg G; Rosen B; Carrozza MC; Sebelius F
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):260-70. PubMed ID: 21292599
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Upper limb cortical maps in amputees with targeted muscle and sensory reinnervation.
    Serino A; Akselrod M; Salomon R; Martuzzi R; Blefari ML; Canzoneri E; Rognini G; van der Zwaag W; Iakova M; Luthi F; Amoresano A; Kuiken T; Blanke O
    Brain; 2017 Nov; 140(11):2993-3011. PubMed ID: 29088353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Case report of modified Box and Blocks test with motion capture to measure prosthetic function.
    Hebert JS; Lewicke J
    J Rehabil Res Dev; 2012; 49(8):1163-74. PubMed ID: 23341309
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Movement characteristics of upper extremity prostheses during basic goal-directed tasks.
    Bouwsema H; van der Sluis CK; Bongers RM
    Clin Biomech (Bristol, Avon); 2010 Jul; 25(6):523-9. PubMed ID: 20362374
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differences in myoelectric and body-powered upper-limb prostheses: Systematic literature review.
    Carey SL; Lura DJ; Highsmith MJ; ;
    J Rehabil Res Dev; 2015; 52(3):247-62. PubMed ID: 26230500
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conditioning and sampling issues of EMG signals in motion recognition of multifunctional myoelectric prostheses.
    Li G; Li Y; Yu L; Geng Y
    Ann Biomed Eng; 2011 Jun; 39(6):1779-87. PubMed ID: 21293972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlling a multi-degree of freedom upper limb prosthesis using foot controls: user experience.
    Resnik L; Klinger SL; Etter K; Fantini C
    Disabil Rehabil Assist Technol; 2014 Jul; 9(4):318-29. PubMed ID: 23902465
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensory substitution of elbow proprioception to improve myoelectric control of upper limb prosthesis: experiment on healthy subjects and amputees.
    Guémann M; Halgand C; Bastier A; Lansade C; Borrini L; Lapeyre É; Cattaert D; de Rugy A
    J Neuroeng Rehabil; 2022 Jun; 19(1):59. PubMed ID: 35690860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.