These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28269713)

  • 1. An adaptive deep learning approach for PPG-based identification.
    Jindal V; Birjandtalab J; Pouyan MB; Nourani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6401-6404. PubMed ID: 28269713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CorNET: Deep Learning Framework for PPG-Based Heart Rate Estimation and Biometric Identification in Ambulant Environment.
    Biswas D; Everson L; Liu M; Panwar M; Verhoef BE; Patki S; Kim CH; Acharyya A; Van Hoof C; Konijnenburg M; Van Helleputte N
    IEEE Trans Biomed Circuits Syst; 2019 Apr; 13(2):282-291. PubMed ID: 30629514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel feature ranking algorithm for biometric recognition with PPG signals.
    Reşit Kavsaoğlu A; Polat K; Recep Bozkurt M
    Comput Biol Med; 2014 Jun; 49():1-14. PubMed ID: 24705467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A supervised learning approach for the robust detection of heart beat in plethysmographic data.
    Grisan E; Cantisani G; Tarroni G; Seung Keun Yoon ; Rossi M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5825-8. PubMed ID: 26737616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep PPG: Large-Scale Heart Rate Estimation with Convolutional Neural Networks.
    Reiss A; Indlekofer I; Schmidt P; Van Laerhoven K
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Supervised Approach to Robust Photoplethysmography Quality Assessment.
    Pereira T; Gadhoumi K; Ma M; Liu X; Xiao R; Colorado RA; Keenan KJ; Meisel K; Hu X
    IEEE J Biomed Health Inform; 2020 Mar; 24(3):649-657. PubMed ID: 30951482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medical intelligence using PPG signals and hybrid learning at the edge to detect fatigue in physical activities.
    Liu P; Song Y; Yang X; Li D; Khosravi M
    Sci Rep; 2024 Jul; 14(1):16149. PubMed ID: 38997404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A motion-tolerant approach for monitoring SpO
    Fan F; Yan Y; Tang Y; Zhang H
    Comput Biol Med; 2017 Dec; 91():291-305. PubMed ID: 29102826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches.
    Khalid SG; Zhang J; Chen F; Zheng D
    J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiratory Rate Estimation using PPG: A Deep Learning Approach.
    Bian D; Mehta P; Selvaraj N
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5948-5952. PubMed ID: 33019328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Living-Skin Classification via Remote-PPG.
    Wang W; Stuijk S; de Haan G
    IEEE Trans Biomed Eng; 2017 Dec; 64(12):2781-2792. PubMed ID: 28278453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosignal integrated circuit with simultaneous acquisition of ECG and PPG for wearable healthcare applications.
    Kim H; Park Y; Ko Y; Mun Y; Lee S; Ko H
    Technol Health Care; 2018; 26(1):3-9. PubMed ID: 29060948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoplethysmography-Based Heart Rate Monitoring in Physical Activities via Joint Sparse Spectrum Reconstruction.
    Zhang Z
    IEEE Trans Biomed Eng; 2015 Aug; 62(8):1902-10. PubMed ID: 26186747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bidirectional Recurrent Auto-Encoder for Photoplethysmogram Denoising.
    Lee J; Sun S; Yang SM; Sohn JJ; Park J; Lee S; Kim HC
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2375-2385. PubMed ID: 30530376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Robust Heart Rate Monitoring Scheme Using Photoplethysmographic Signals Corrupted by Intense Motion Artifacts.
    Khan E; Al Hossain F; Uddin SZ; Alam SK; Hasan MK
    IEEE Trans Biomed Eng; 2016 Mar; 63(3):550-62. PubMed ID: 26276979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive template matching of photoplethysmogram pulses to detect motion artefact.
    Lim PK; Ng SC; Lovell NH; Yu YP; Tan MP; McCombie D; Lim E; Redmond SJ
    Physiol Meas; 2018 Oct; 39(10):105005. PubMed ID: 30183675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate Heart Rate Monitoring During Physical Exercises Using PPG.
    Temko A
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2016-2024. PubMed ID: 28278454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A motion-tolerant adaptive algorithm for wearable photoplethysmographic biosensors.
    Yousefi R; Nourani M; Ostadabbas S; Panahi I
    IEEE J Biomed Health Inform; 2014 Mar; 18(2):670-81. PubMed ID: 24608066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning Approaches to Detect Atrial Fibrillation Using Photoplethysmographic Signals: Algorithms Development Study.
    Kwon S; Hong J; Choi EK; Lee E; Hostallero DE; Kang WJ; Lee B; Jeong ER; Koo BK; Oh S; Yi Y
    JMIR Mhealth Uhealth; 2019 Jun; 7(6):e12770. PubMed ID: 31199302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility Study of Deep Neural Network for Heart Rate Estimation from Wearable Photoplethysmography and Acceleration Signals.
    Chung H; Ko H; Lee H; Lee J
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3633-3636. PubMed ID: 31946663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.