These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28270050)

  • 1. Water quality and daily temperature cycle affect biofilm formation in drip irrigation devices revealed by optical coherence tomography.
    Qian J; Horn H; Tarchitzky J; Chen Y; Katz S; Wagner M
    Biofouling; 2017 Mar; 33(3):211-221. PubMed ID: 28270050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drip irrigation biofouling with treated wastewater: bacterial selection revealed by high-throughput sequencing.
    Lequette K; Ait-Mouheb N; Wéry N
    Biofouling; 2019 Feb; 35(2):217-229. PubMed ID: 30935236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic effect on biofouling of milli-labyrinth channel and bacterial communities in drip irrigation systems fed with reclaimed wastewater.
    Lequette K; Ait-Mouheb N; Wéry N
    Sci Total Environ; 2020 Oct; 738():139778. PubMed ID: 32531594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the chlorination and pressure flushing of drippers fed by reclaimed wastewater on biofouling.
    Lequette K; Ait-Mouheb N; Adam N; Muffat-Jeandet M; Bru-Adan V; Wéry N
    Sci Total Environ; 2021 Mar; 758():143598. PubMed ID: 33213927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-situ biofilm characterization in membrane systems using Optical Coherence Tomography: formation, structure, detachment and impact of flux change.
    Dreszer C; Wexler AD; Drusová S; Overdijk T; Zwijnenburg A; Flemming HC; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Dec; 67():243-54. PubMed ID: 25282092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ biofouling assessment in spacer filled channels using optical coherence tomography (OCT): 3D biofilm thickness mapping.
    Fortunato L; Leiknes T
    Bioresour Technol; 2017 Apr; 229():231-235. PubMed ID: 28111031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treated wastewater reuse in micro-irrigation: effect of shear stress on biofilm development kinetics and chemical precipitation.
    Rizk N; Ait-Mouheb N; Molle B; Roche N
    Environ Technol; 2021 Jan; 42(2):206-216. PubMed ID: 31145040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation mechanism of biofilm under different water shear forces along the networked pipelines in a drip irrigation system.
    Wang T; Guo Z; Shen Y; Cui Z; Goodwin A
    Sci Rep; 2020 Apr; 10(1):6960. PubMed ID: 32332820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Irrigation Drippers with Rechargeable N-Halamine Nanoparticles for Antifouling Applications.
    Natan M; Gutman O; Segev D; Margel S; Banin E
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23584-23590. PubMed ID: 31252498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effectiveness of hydrogen peroxide treatments in preventing biofilm clogging in drip irrigation systems applying treated wastewater.
    Japhet N; Tarchitzky J; Chen Y
    Biofouling; 2022 Jul; 38(6):575-592. PubMed ID: 35924331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofilm structure and its influence on clogging in drip irrigation emitters distributing reclaimed wastewater.
    Yan D; Bai Z; Mike R; Gu L; Ren S; Yang P
    J Environ Sci (China); 2009; 21(6):834-41. PubMed ID: 19803091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochar and flow interruption control spatio-temporal dynamics of fecal coliform retention under subsurface drip irrigation.
    Teshnizi FA; Ghobadinia M; Abbasi F; Hallett PD; Sepehrnia N
    J Contam Hydrol; 2023 Feb; 253():104128. PubMed ID: 36603302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of irrigation and wastewater reuse: comparison of subsurface irrigation and furrow irrigation.
    Choi C; Song I; Stine S; Pimentel J; Gerba C
    Water Sci Technol; 2004; 50(2):61-8. PubMed ID: 15344774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitigation of biofouling in agricultural water distribution systems with nanobubbles.
    Xiao Y; Jiang SC; Wang X; Muhammad T; Song P; Zhou B; Zhou Y; Li Y
    Environ Int; 2020 Aug; 141():105787. PubMed ID: 32402981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-term effects of irrigation with treated domestic wastewater on microbiological activity of a Vertic xerofluvent soil under Mediterranean conditions.
    Kayikcioglu HH
    J Environ Manage; 2012 Jul; 102():108-14. PubMed ID: 22446138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of water temperature on biofouling development in reverse osmosis membrane systems.
    Farhat NM; Vrouwenvelder JS; Van Loosdrecht MCM; Bucs SS; Staal M
    Water Res; 2016 Oct; 103():149-159. PubMed ID: 27450353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opportunities for woody crop production using treated wastewater in Egypt. II. Irrigation strategies.
    Evett SR; Zalesny RS; Kandil NF; Stanturf JA; Soriano C
    Int J Phytoremediation; 2011; 13 Suppl 1():122-39. PubMed ID: 22046755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of soil texture to the fate of pathogens introduced by irrigation with treated wastewater.
    Obayomi O; Bernstein N; Edelstein M; Vonshak A; Ghazayarn L; Ben-Hur M; Tebbe CC; Gillor O
    Sci Total Environ; 2019 Feb; 653():886-896. PubMed ID: 30759614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Greywater reuse through a bioretention system prototype in the arid region.
    Chowdhury RK
    Water Sci Technol; 2015; 72(12):2201-11. PubMed ID: 26676008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A risk-based approach for developing standards for irrigation with reclaimed water.
    Troldborg M; Duckett D; Allan R; Hastings E; Hough RL
    Water Res; 2017 Dec; 126():372-384. PubMed ID: 28985601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.