These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 28270093)
1. Machine learning classifier for identification of damaging missense mutations exclusive to human mitochondrial DNA-encoded polypeptides. Martín-Navarro A; Gaudioso-Simón A; Álvarez-Jarreta J; Montoya J; Mayordomo E; Ruiz-Pesini E BMC Bioinformatics; 2017 Mar; 18(1):158. PubMed ID: 28270093 [TBL] [Abstract][Full Text] [Related]
2. Novel gene-specific Bayesian Gaussian mixture model to predict the missense variants pathogenicity of Sanfilippo syndrome. Mohammed EEA; Fayez AG; Abdelfattah NM; Fateen E Sci Rep; 2024 May; 14(1):12148. PubMed ID: 38802532 [TBL] [Abstract][Full Text] [Related]
3. APOGEE 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants. Bianco SD; Parca L; Petrizzelli F; Biagini T; Giovannetti A; Liorni N; Napoli A; Carella M; Procaccio V; Lott MT; Zhang S; Vescovi AL; Wallace DC; Caputo V; Mazza T Nat Commun; 2023 Aug; 14(1):5058. PubMed ID: 37598215 [TBL] [Abstract][Full Text] [Related]
4. CRIMEtoYHU: a new web tool to develop yeast-based functional assays for characterizing cancer-associated missense variants. Mercatanti A; Lodovichi S; Cervelli T; Galli A FEMS Yeast Res; 2017 Dec; 17(8):. PubMed ID: 29069390 [TBL] [Abstract][Full Text] [Related]
5. Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. Flanagan SE; Patch AM; Ellard S Genet Test Mol Biomarkers; 2010 Aug; 14(4):533-7. PubMed ID: 20642364 [TBL] [Abstract][Full Text] [Related]
6. Impact of the Mutational Landscape of the Sodium/Iodide Symporter in Congenital Hypothyroidism. Martín M; Nicola JP Thyroid; 2021 Dec; 31(12):1776-1785. PubMed ID: 34514854 [No Abstract] [Full Text] [Related]
7. Assessment of computational methods for predicting the effects of missense mutations in human cancers. Gnad F; Baucom A; Mukhyala K; Manning G; Zhang Z BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S7. PubMed ID: 23819521 [TBL] [Abstract][Full Text] [Related]
8. Novel heteroplasmic frameshift and missense somatic mitochondrial DNA mutations in oral cancer of betel quid chewers. Tan DJ; Chang J; Chen WL; Agress LJ; Yeh KT; Wang B; Wong LJ Genes Chromosomes Cancer; 2003 Jun; 37(2):186-94. PubMed ID: 12696067 [TBL] [Abstract][Full Text] [Related]
9. Surveyor Nuclease: a new strategy for a rapid identification of heteroplasmic mitochondrial DNA mutations in patients with respiratory chain defects. Bannwarth S; Procaccio V; Paquis-Flucklinger V Hum Mutat; 2005 Jun; 25(6):575-82. PubMed ID: 15880407 [TBL] [Abstract][Full Text] [Related]
10. Predicting functional effect of human missense mutations using PolyPhen-2. Adzhubei I; Jordan DM; Sunyaev SR Curr Protoc Hum Genet; 2013 Jan; Chapter 7():Unit7.20. PubMed ID: 23315928 [TBL] [Abstract][Full Text] [Related]
11. Somatic mutations of the mitochondrial genome in human breast cancers. Tseng LM; Yin PH; Yang CW; Tsai YF; Hsu CY; Chi CW; Lee HC Genes Chromosomes Cancer; 2011 Oct; 50(10):800-11. PubMed ID: 21748819 [TBL] [Abstract][Full Text] [Related]
12. Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Mathe E; Olivier M; Kato S; Ishioka C; Hainaut P; Tavtigian SV Nucleic Acids Res; 2006; 34(5):1317-25. PubMed ID: 16522644 [TBL] [Abstract][Full Text] [Related]
14. MmisAT and MmisP: an efficient and accurate suite of variant analysis toolkit for primary mitochondrial diseases. Huang S; Wu Z; Wang T; Yu R; Song Z; Wang H Hum Genomics; 2023 Nov; 17(1):108. PubMed ID: 38012712 [TBL] [Abstract][Full Text] [Related]
15. MtSNPscore: a combined evidence approach for assessing cumulative impact of mitochondrial variations in disease. Bhardwaj A; Mukerji M; Sharma S; Paul J; Gokhale CS; Srivastava AK; Tiwari S BMC Bioinformatics; 2009 Aug; 10 Suppl 8(Suppl 8):S7. PubMed ID: 19758471 [TBL] [Abstract][Full Text] [Related]
16. Detailed computational study of p53 and p16: using evolutionary sequence analysis and disease-associated mutations to predict the functional consequences of allelic variants. Greenblatt MS; Beaudet JG; Gump JR; Godin KS; Trombley L; Koh J; Bond JP Oncogene; 2003 Feb; 22(8):1150-63. PubMed ID: 12606942 [TBL] [Abstract][Full Text] [Related]
17. Classification of Amino Acid Substitutions in Mismatch Repair Proteins Using PON-MMR2. Niroula A; Vihinen M Hum Mutat; 2015 Dec; 36(12):1128-34. PubMed ID: 26333163 [TBL] [Abstract][Full Text] [Related]
18. mtDNA point mutations are present at various levels of heteroplasmy in human oocytes. Jacobs L; Gerards M; Chinnery P; Dumoulin J; de Coo I; Geraedts J; Smeets H Mol Hum Reprod; 2007 Mar; 13(3):149-54. PubMed ID: 17259224 [TBL] [Abstract][Full Text] [Related]
19. Predicting the functional consequences of somatic missense mutations found in tumors. Carter H; Karchin R Methods Mol Biol; 2014; 1101():135-59. PubMed ID: 24233781 [TBL] [Abstract][Full Text] [Related]
20. Comparison of pathogenicity prediction tools on missense variants in RYR1 and CACNA1S associated with malignant hyperthermia. Schiemann AH; Stowell KM Br J Anaesth; 2016 Jul; 117(1):124-8. PubMed ID: 27147545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]