These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Genomic prediction using imputed whole-genome sequence data in Holstein Friesian cattle. van Binsbergen R; Calus MP; Bink MC; van Eeuwijk FA; Schrooten C; Veerkamp RF Genet Sel Evol; 2015 Sep; 47(1):71. PubMed ID: 26381777 [TBL] [Abstract][Full Text] [Related]
3. Genomic imputation and evaluation using high-density Holstein genotypes. VanRaden PM; Null DJ; Sargolzaei M; Wiggans GR; Tooker ME; Cole JB; Sonstegard TS; Connor EE; Winters M; van Kaam JB; Valentini A; Van Doormaal BJ; Faust MA; Doak GA J Dairy Sci; 2013 Jan; 96(1):668-78. PubMed ID: 23063157 [TBL] [Abstract][Full Text] [Related]
4. Assets of imputation to ultra-high density for productive and functional traits. Jiménez-Montero JA; Gianola D; Weigel K; Alenda R; González-Recio O J Dairy Sci; 2013 Sep; 96(9):6047-58. PubMed ID: 23810591 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the accuracy of imputed sequence variant genotypes and their utility for causal variant detection in cattle. Pausch H; MacLeod IM; Fries R; Emmerling R; Bowman PJ; Daetwyler HD; Goddard ME Genet Sel Evol; 2017 Feb; 49(1):24. PubMed ID: 28222685 [TBL] [Abstract][Full Text] [Related]
6. Within-breed and multi-breed GWAS on imputed whole-genome sequence variants reveal candidate mutations affecting milk protein composition in dairy cattle. Sanchez MP; Govignon-Gion A; Croiseau P; Fritz S; Hozé C; Miranda G; Martin P; Barbat-Leterrier A; Letaïef R; Rocha D; Brochard M; Boussaha M; Boichard D Genet Sel Evol; 2017 Sep; 49(1):68. PubMed ID: 28923017 [TBL] [Abstract][Full Text] [Related]
7. Marker selection and genomic prediction of economically important traits using imputed high-density genotypes for 5 breeds of dairy cattle. Al-Khudhair A; VanRaden PM; Null DJ; Li B J Dairy Sci; 2021 Apr; 104(4):4478-4485. PubMed ID: 33612229 [TBL] [Abstract][Full Text] [Related]
8. Genomic prediction using preselected DNA variants from a GWAS with whole-genome sequence data in Holstein-Friesian cattle. Veerkamp RF; Bouwman AC; Schrooten C; Calus MP Genet Sel Evol; 2016 Dec; 48(1):95. PubMed ID: 27905878 [TBL] [Abstract][Full Text] [Related]
9. Use of meta-analyses and joint analyses to select variants in whole genome sequences for genomic evaluation: An application in milk production of French dairy cattle breeds. Teissier M; Sanchez MP; Boussaha M; Barbat A; Hoze C; Robert-Granie C; Croiseau P J Dairy Sci; 2018 Apr; 101(4):3126-3139. PubMed ID: 29428760 [TBL] [Abstract][Full Text] [Related]
11. Increasing imputation and prediction accuracy for Chinese Holsteins using joint Chinese-Nordic reference population. Ma P; Lund MS; Ding X; Zhang Q; Su G J Anim Breed Genet; 2014 Dec; 131(6):462-72. PubMed ID: 25099946 [TBL] [Abstract][Full Text] [Related]
12. Impact of rare and low-frequency sequence variants on reliability of genomic prediction in dairy cattle. Zhang Q; Sahana G; Su G; Guldbrandtsen B; Lund MS; Calus MPL Genet Sel Evol; 2018 Nov; 50(1):62. PubMed ID: 30458700 [TBL] [Abstract][Full Text] [Related]
13. Comparison of genomic predictions using medium-density (∼54,000) and high-density (∼777,000) single nucleotide polymorphism marker panels in Nordic Holstein and Red Dairy Cattle populations. Su G; Brøndum RF; Ma P; Guldbrandtsen B; Aamand GP; Lund MS J Dairy Sci; 2012 Aug; 95(8):4657-65. PubMed ID: 22818480 [TBL] [Abstract][Full Text] [Related]
14. Genomic relationships based on X chromosome markers and accuracy of genomic predictions with and without X chromosome markers. Su G; Guldbrandtsen B; Aamand GP; Strandén I; Lund MS Genet Sel Evol; 2014 Jul; 46(1):47. PubMed ID: 25080199 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide association studies and genomic prediction of breeding values for calving performance and body conformation traits in Holstein cattle. Abo-Ismail MK; Brito LF; Miller SP; Sargolzaei M; Grossi DA; Moore SS; Plastow G; Stothard P; Nayeri S; Schenkel FS Genet Sel Evol; 2017 Nov; 49(1):82. PubMed ID: 29115939 [TBL] [Abstract][Full Text] [Related]
16. Sequence variants selected from a multi-breed GWAS can improve the reliability of genomic predictions in dairy cattle. van den Berg I; Boichard D; Lund MS Genet Sel Evol; 2016 Nov; 48(1):83. PubMed ID: 27809758 [TBL] [Abstract][Full Text] [Related]
17. A mating advice system in dairy cattle incorporating genomic information. Carthy TR; McCarthy J; Berry DP J Dairy Sci; 2019 Sep; 102(9):8210-8220. PubMed ID: 31229287 [TBL] [Abstract][Full Text] [Related]
18. Reliability of genomic prediction for German Holsteins using imputed genotypes from low-density chips. Segelke D; Chen J; Liu Z; Reinhardt F; Thaller G; Reents R J Dairy Sci; 2012 Sep; 95(9):5403-5411. PubMed ID: 22916947 [TBL] [Abstract][Full Text] [Related]
19. On the limited increase in validation reliability using high-density genotypes in genomic best linear unbiased prediction: observations from Fleckvieh cattle. Ertl J; Edel C; Emmerling R; Pausch H; Fries R; Götz KU J Dairy Sci; 2014; 97(1):487-96. PubMed ID: 24210491 [TBL] [Abstract][Full Text] [Related]
20. Multi-breed genomic prediction using Bayes R with sequence data and dropping variants with a small effect. van den Berg I; Bowman PJ; MacLeod IM; Hayes BJ; Wang T; Bolormaa S; Goddard ME Genet Sel Evol; 2017 Sep; 49(1):70. PubMed ID: 28934948 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]