These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 28270099)

  • 41. Social immunity: why we should study its nature, evolution and functions across all social systems.
    Van Meyel S; Körner M; Meunier J
    Curr Opin Insect Sci; 2018 Aug; 28():1-7. PubMed ID: 30551759
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Eicosanoid-mediated immunity in insects.
    Kim Y; Ahmed S; Stanley D; An C
    Dev Comp Immunol; 2018 Jun; 83():130-143. PubMed ID: 29225005
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of mating and age on susceptibility of the beetle Anoplophora glabripennis to the fungal pathogen Metarhizium brunneum.
    Fisher JJ; Hajek AE
    J Invertebr Pathol; 2016 May; 136():142-8. PubMed ID: 27103165
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microbiota in insect fungal pathology.
    Boucias DG; Zhou Y; Huang S; Keyhani NO
    Appl Microbiol Biotechnol; 2018 Jul; 102(14):5873-5888. PubMed ID: 29802479
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Male pregnancy and biparental immune priming.
    Roth O; Klein V; Beemelmanns A; Scharsack JP; Reusch TB
    Am Nat; 2012 Dec; 180(6):802-14. PubMed ID: 23149404
    [TBL] [Abstract][Full Text] [Related]  

  • 46. MicroRNAs as mediators of insect host-pathogen interactions and immunity.
    Hussain M; Asgari S
    J Insect Physiol; 2014 Nov; 70():151-8. PubMed ID: 25152509
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Responses to a warming world: Integrating life history, immune investment, and pathogen resistance in a model insect species.
    Laughton AM; O'Connor CO; Knell RJ
    Ecol Evol; 2017 Nov; 7(22):9699-9710. PubMed ID: 29188001
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ontogenetic changes in immunity and susceptibility to fungal infection in Mormon crickets Anabrus simplex.
    Srygley RB
    J Insect Physiol; 2012 Mar; 58(3):342-7. PubMed ID: 22206886
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum.
    Zhang W; Chen J; Keyhani NO; Zhang Z; Li S; Xia Y
    BMC Genomics; 2015 Oct; 16():867. PubMed ID: 26503342
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stress responses sculpt the insect immune system, optimizing defense in an ever-changing world.
    Adamo SA
    Dev Comp Immunol; 2017 Jan; 66():24-32. PubMed ID: 27288849
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coevolution of parasitic fungi and insect hosts.
    Joop G; Vilcinskas A
    Zoology (Jena); 2016 Aug; 119(4):350-8. PubMed ID: 27448694
    [TBL] [Abstract][Full Text] [Related]  

  • 52. European earwig (Forficula auricularia) as a novel host for the entomopathogenic nematode Steinernema carpocapsae.
    Hodson AK; Friedman ML; Wu LN; Lewis EE
    J Invertebr Pathol; 2011 May; 107(1):60-4. PubMed ID: 21356215
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The ring-legged earwig Euborellia annulipes as a new model for oogenesis and development studies in insects.
    Núñez-Pascual V; Calleja F; Pardo RV; Sarrazin AF; Irles P
    J Exp Zool B Mol Dev Evol; 2023 Jan; 340(1):18-33. PubMed ID: 35167178
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Immunological mechanisms of synergy between fungus Metarhizium robertsii and bacteria Bacillus thuringiensis ssp. morrisoni on Colorado potato beetle larvae.
    Yaroslavtseva ON; Dubovskiy IM; Khodyrev VP; Duisembekov BA; Kryukov VY; Glupov VV
    J Insect Physiol; 2017 Jan; 96():14-20. PubMed ID: 27751890
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Immunosenescence and the ability to survive bacterial infection in the red flour beetle Tribolium castaneum.
    Khan I; Prakash A; Agashe D
    J Anim Ecol; 2016 Jan; 85(1):291-301. PubMed ID: 26257080
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of Juvenile Hormone on Resistance against Entomopathogenic Fungus
    Rantala MJ; Dubovskiy IM; Pölkki M; Krama T; Contreras-Garduño J; Krams IA
    J Fungi (Basel); 2020 Nov; 6(4):. PubMed ID: 33227937
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of maternal and paternal immune challenge on offspring immunity and reproduction in a cricket.
    McNamara KB; van Lieshout E; Simmons LW
    J Evol Biol; 2014 Jun; 27(6):1020-8. PubMed ID: 24750259
    [TBL] [Abstract][Full Text] [Related]  

  • 58. INTERACTIVE EFFECTS OF OFFSPRING SIZE AND TIMING OF REPRODUCTION ON OFFSPRING REPRODUCTION: EXPERIMENTAL, MATERNAL, AND QUANTITATIVE GENETIC ASPECTS.
    Sinervo B; Doughty P
    Evolution; 1996 Jun; 50(3):1314-1327. PubMed ID: 28565283
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Parental legacy in insects: variation of transgenerational immune priming during offspring development.
    Trauer U; Hilker M
    PLoS One; 2013; 8(5):e63392. PubMed ID: 23700423
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Survival and immune response of the Chagas vector Meccus pallidipennis (Hemiptera: Reduviidae) against two entomopathogenic fungi, Metarhizium anisopliae and Isaria fumosorosea.
    Flores-Villegas AL; Cabrera-Bravo M; Toriello C; Bucio-Torres MI; Salazar-Schettino PM; Córdoba-Aguilar A
    Parasit Vectors; 2016 Mar; 9():176. PubMed ID: 27012246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.