These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28270099)

  • 81. Maternal effects in disease resistance: poor maternal environment increases offspring resistance to an insect virus.
    Boots M; Roberts KE
    Proc Biol Sci; 2012 Oct; 279(1744):4009-14. PubMed ID: 22833270
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Do embryos influence maternal investment? Evaluating maternal-fetal coadaptation and the potential for parent-offspring conflict in a placental fish.
    Schrader M; Travis J
    Evolution; 2009 Nov; 63(11):2805-15. PubMed ID: 19573085
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Post-hatching parental care masks the effects of egg size on offspring fitness: a removal experiment on burying beetles.
    Monteith KM; Andrews C; Smiseth PT
    J Evol Biol; 2012 Sep; 25(9):1815-22. PubMed ID: 22775779
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The competence of hemocyte immunity in the armyworm Mythimna separata larvae to sublethal hexaflumuron exposure.
    Huang Q; Zhang L; Yang C; Yun X; He Y
    Pestic Biochem Physiol; 2016 Jun; 130():31-38. PubMed ID: 27155481
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Insect-pathogen dynamics: stage-specific susceptibility and insect density dependence.
    Moerbeek M; van den Bosch F
    Math Biosci; 1997 Apr; 141(2):115-48. PubMed ID: 9103829
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Starvation and Imidacloprid Exposure Influence Immune Response by Anoplophora glabripennis (Coleoptera: Cerambycidae) to a Fungal Pathogen.
    Fisher JJ; Castrillo LA; Donzelli BGG; Hajek AE
    J Econ Entomol; 2017 Aug; 110(4):1451-1459. PubMed ID: 28482047
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Experimental evolution reveals differences between phenotypic and evolutionary responses to population density.
    McNamara KB; Simmons LW
    J Evol Biol; 2017 Sep; 30(9):1763-1771. PubMed ID: 28675768
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Interactions between imidacloprid and Metarhizium brunneum on adult Asian longhorned beetles (Anoplophora glabripennis (Motschulsky)) (Coleoptera: Cerambycidae).
    Russell CW; Ugine TA; Hajek AE
    J Invertebr Pathol; 2010 Nov; 105(3):305-11. PubMed ID: 20807541
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Biparental immune priming in the pipefish Syngnathus typhle.
    Beemelmanns A; Roth O
    Zoology (Jena); 2016 Aug; 119(4):262-72. PubMed ID: 27477613
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Dual effects of Metarhizium spp. and Clonostachys rosea against an insect and a seed-borne pathogen in wheat.
    Keyser CA; Jensen B; Meyling NV
    Pest Manag Sci; 2016 Mar; 72(3):517-26. PubMed ID: 25827357
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Phenoloxidase activity and pathogen resistance in yellow dung flies Scathophaga stercoraria.
    Schwarzenbach GA; Ward PI
    J Evol Biol; 2007 Nov; 20(6):2192-9. PubMed ID: 17956383
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Lifecycle of the invasive omnivore, Forficula auricularia, in Australian grain growing environments.
    Binns M; Hoffmann AA; van Helden M; Heddle T; Hill MP; Macfadyen S; Nash MA; Umina PA
    Pest Manag Sci; 2021 Apr; 77(4):1818-1828. PubMed ID: 33274578
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Repeated loss of variation in insect ovary morphology highlights the role of development in life-history evolution.
    Church SH; de Medeiros BAS; Donoughe S; Márquez Reyes NL; Extavour CG
    Proc Biol Sci; 2021 May; 288(1950):20210150. PubMed ID: 33947234
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Activation of the immune system promotes insect dispersal in the wild.
    Suhonen J; Honkavaara J; Rantala MJ
    Oecologia; 2010 Mar; 162(3):541-7. PubMed ID: 19830456
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Eicosanoids in insect immune signal transduction.
    Stanley DW; Howard RW
    Adv Exp Med Biol; 2001; 484():265-73. PubMed ID: 11418992
    [No Abstract]   [Full Text] [Related]  

  • 96. Seasonal change in the humidity reaction of the common earwig, forficula auricularia.
    PERTTUNEN V
    Nature; 1952 Aug; 170(4318):209-10. PubMed ID: 12982867
    [No Abstract]   [Full Text] [Related]  

  • 97. Why do insects evolve immune priming? A search for crossroads.
    Prakash A; Khan I
    Dev Comp Immunol; 2022 Jan; 126():104246. PubMed ID: 34453994
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The flora of the alimentary tract of the common earwig (Forficula auricularia).
    SHREWSBURY JF; BARSON GJ
    J Pathol Bacteriol; 1954 Oct; 68(2):634-8. PubMed ID: 14354570
    [No Abstract]   [Full Text] [Related]  

  • 99. Social immunity in insects.
    Cremer S
    Curr Biol; 2019 Jun; 29(11):R458-R463. PubMed ID: 31163158
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Eicosanoids mediate insect cellular immune reactions to bacterial infections.
    Stanley DW
    Adv Exp Med Biol; 1997; 433():359-62. PubMed ID: 9561170
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.