These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 28270108)
1. Identification and analysis of the stigma and embryo sac-preferential/specific genes in rice pistils. Yu L; Ma T; Zhang Y; Hu Y; Yu K; Chen Y; Ma H; Zhao J BMC Plant Biol; 2017 Mar; 17(1):60. PubMed ID: 28270108 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide gene expression profiling reveals conserved and novel molecular functions of the stigma in rice. Li M; Xu W; Yang W; Kong Z; Xue Y Plant Physiol; 2007 Aug; 144(4):1797-812. PubMed ID: 17556504 [TBL] [Abstract][Full Text] [Related]
3. Identification of genes specifically or preferentially expressed in maize silk reveals similarity and diversity in transcript abundance of different dry stigmas. Xu XH; Chen H; Sang YL; Wang F; Ma JP; Gao XQ; Zhang XS BMC Genomics; 2012 Jul; 13():294. PubMed ID: 22748054 [TBL] [Abstract][Full Text] [Related]
4. The large-scale investigation of gene expression in Leymus chinensis stigmas provides a valuable resource for understanding the mechanisms of poaceae self-incompatibility. Zhou Q; Jia J; Huang X; Yan X; Cheng L; Chen S; Li X; Peng X; Liu G BMC Genomics; 2014 May; 15(1):399. PubMed ID: 24886329 [TBL] [Abstract][Full Text] [Related]
5. Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. Wei LQ; Xu WY; Deng ZY; Su Z; Xue Y; Wang T BMC Genomics; 2010 May; 11():338. PubMed ID: 20507633 [TBL] [Abstract][Full Text] [Related]
6. Analysis of small RNAs revealed differential expressions during pollen and embryo sac development in autotetraploid rice. Li X; Shahid MQ; Xia J; Lu Z; Fang N; Wang L; Wu J; Chen Z; Liu X BMC Genomics; 2017 Feb; 18(1):129. PubMed ID: 28166742 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide identification of genes expressed in Arabidopsis pistils specifically along the path of pollen tube growth. Tung CW; Dwyer KG; Nasrallah ME; Nasrallah JB Plant Physiol; 2005 Jun; 138(2):977-89. PubMed ID: 15894741 [TBL] [Abstract][Full Text] [Related]
8. Comparative analysis of pistil transcriptomes reveals conserved and novel genes expressed in dry, wet, and semidry stigmas. Allen AM; Lexer C; Hiscock SJ Plant Physiol; 2010 Nov; 154(3):1347-60. PubMed ID: 20813907 [TBL] [Abstract][Full Text] [Related]
9. Intermittent pollen-tube growth in pistils of alders (Alnus). Sogo A; Tobe H Proc Natl Acad Sci U S A; 2005 Jun; 102(24):8770-5. PubMed ID: 15932945 [TBL] [Abstract][Full Text] [Related]
10. Identification of pre-fertilization reproductive barriers and the underlying cytological mechanism in crosses among three petal-types of Jasminum sambac and their relevance to phylogenetic relationships. Deng Y; Sun X; Gu C; Jia X; Liang L; Su J PLoS One; 2017; 12(4):e0176026. PubMed ID: 28419158 [TBL] [Abstract][Full Text] [Related]
11. Comparative proteomic analysis reveals a dynamic pollen plasma membrane protein map and the membrane landscape of receptor-like kinases and transporters important for pollen tube growth and interaction with pistils in rice. Yang N; Wang T BMC Plant Biol; 2017 Jan; 17(1):2. PubMed ID: 28056797 [TBL] [Abstract][Full Text] [Related]
14. Analysis of anther transcriptomes to identify genes contributing to meiosis and male gametophyte development in rice. Deveshwar P; Bovill WD; Sharma R; Able JA; Kapoor S BMC Plant Biol; 2011 May; 11():78. PubMed ID: 21554676 [TBL] [Abstract][Full Text] [Related]
15. The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Huck N; Moore JM; Federer M; Grossniklaus U Development; 2003 May; 130(10):2149-59. PubMed ID: 12668629 [TBL] [Abstract][Full Text] [Related]
16. Exploration of rice pistil responses during early post-pollination through a combined proteomic and transcriptomic analysis. Li M; Wang K; Li S; Yang P J Proteomics; 2016 Jan; 131():214-226. PubMed ID: 26546731 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Zhang YC; Liao JY; Li ZY; Yu Y; Zhang JP; Li QF; Qu LH; Shu WS; Chen YQ Genome Biol; 2014 Dec; 15(12):512. PubMed ID: 25517485 [TBL] [Abstract][Full Text] [Related]
18. Gene expression and localization of arabinogalactan proteins during the development of anther, ovule, and embryo in rice. Ma T; Dong F; Luan D; Hu H; Zhao J Protoplasma; 2019 Jul; 256(4):909-922. PubMed ID: 30675653 [TBL] [Abstract][Full Text] [Related]
19. Monitoring of gene expression profiles and isolation of candidate genes involved in pollination and fertilization in rice ( Oryza sativa L.) with a 10K cDNA microarray. Lan L; Chen W; Lai Y; Suo J; Kong Z; Li C; Lu Y; Zhang Y; Zhao X; Zhang X; Zhang Y; Han B; Cheng J; Xue Y Plant Mol Biol; 2004 Mar; 54(4):471-87. PubMed ID: 15316284 [TBL] [Abstract][Full Text] [Related]
20. The Plant Ovule Secretome: A Different View toward Pollen-Pistil Interactions. Liu Y; Joly V; Dorion S; Rivoal J; Matton DP J Proteome Res; 2015 Nov; 14(11):4763-75. PubMed ID: 26387803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]