BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 28270225)

  • 1. Post-transcriptional regulation of fruit ripening and disease resistance in tomato by the vacuolar protease SlVPE3.
    Wang W; Cai J; Wang P; Tian S; Qin G
    Genome Biol; 2017 Mar; 18(1):47. PubMed ID: 28270225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Tomato Vacuolar Invertase Inhibitor Mediates Sucrose Metabolism and Influences Fruit Ripening.
    Qin G; Zhu Z; Wang W; Cai J; Chen Y; Li L; Tian S
    Plant Physiol; 2016 Nov; 172(3):1596-1611. PubMed ID: 27694342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mode of action of remorin1 in regulating fruit ripening at transcriptional and post-transcriptional levels.
    Cai J; Qin G; Chen T; Tian S
    New Phytol; 2018 Sep; 219(4):1406-1420. PubMed ID: 29978907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The
    Li S; Xu H; Ju Z; Cao D; Zhu H; Fu D; Grierson D; Qin G; Luo Y; Zhu B
    Plant Physiol; 2018 Jan; 176(1):891-909. PubMed ID: 29133374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pivotal ripening gene SlDML2 participates in regulating disease resistance in tomato.
    Zhou L; Gao G; Li X; Wang W; Tian S; Qin G
    Plant Biotechnol J; 2023 Nov; 21(11):2291-2306. PubMed ID: 37466912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ripening-regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or ethylene.
    Cantu D; Blanco-Ulate B; Yang L; Labavitch JM; Bennett AB; Powell AL
    Plant Physiol; 2009 Jul; 150(3):1434-49. PubMed ID: 19465579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening.
    Karlova R; Rosin FM; Busscher-Lange J; Parapunova V; Do PT; Fernie AR; Fraser PD; Baxter C; Angenent GC; de Maagd RA
    Plant Cell; 2011 Mar; 23(3):923-41. PubMed ID: 21398570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network.
    Itkin M; Seybold H; Breitel D; Rogachev I; Meir S; Aharoni A
    Plant J; 2009 Dec; 60(6):1081-95. PubMed ID: 19891701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA profiling analysis throughout tomato fruit development and ripening reveals potential regulatory role of RIN on microRNAs accumulation.
    Gao C; Ju Z; Cao D; Zhai B; Qin G; Zhu H; Fu D; Luo Y; Zhu B
    Plant Biotechnol J; 2015 Apr; 13(3):370-82. PubMed ID: 25516062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation.
    Zhu M; Chen G; Zhou S; Tu Y; Wang Y; Dong T; Hu Z
    Plant Cell Physiol; 2014 Jan; 55(1):119-35. PubMed ID: 24265273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea.
    Shah P; Powell AL; Orlando R; Bergmann C; Gutierrez-Sanchez G
    J Proteome Res; 2012 Apr; 11(4):2178-92. PubMed ID: 22364583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening.
    Ma N; Feng H; Meng X; Li D; Yang D; Wu C; Meng Q
    BMC Plant Biol; 2014 Dec; 14():351. PubMed ID: 25491370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tomato transcriptional repressor MYB70 directly regulates ethylene-dependent fruit ripening.
    Cao H; Chen J; Yue M; Xu C; Jian W; Liu Y; Song B; Gao Y; Cheng Y; Li Z
    Plant J; 2020 Dec; 104(6):1568-1581. PubMed ID: 33048422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening.
    Costa F; Alba R; Schouten H; Soglio V; Gianfranceschi L; Serra S; Musacchi S; Sansavini S; Costa G; Fei Z; Giovannoni J
    BMC Plant Biol; 2010 Oct; 10():229. PubMed ID: 20973957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening.
    Dong T; Hu Z; Deng L; Wang Y; Zhu M; Zhang J; Chen G
    Plant Physiol; 2013 Oct; 163(2):1026-36. PubMed ID: 24006286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening.
    Bemer M; Karlova R; Ballester AR; Tikunov YM; Bovy AG; Wolters-Arts M; Rossetto Pde B; Angenent GC; de Maagd RA
    Plant Cell; 2012 Nov; 24(11):4437-51. PubMed ID: 23136376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation.
    Fujisawa M; Nakano T; Ito Y
    BMC Plant Biol; 2011 Jan; 11():26. PubMed ID: 21276270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative N-glycoproteome analysis provides novel insights into the regulation mechanism in tomato (solanum lycopersicum L.) During fruit ripening process.
    Zhang X; Tang H; Du H; Liu Z; Bao Z; Shi Q
    Plant Sci; 2020 Apr; 293():110413. PubMed ID: 32081262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethylene-MPK8-ERF.C1-PR module confers resistance against Botrytis cinerea in tomato fruit without compromising ripening.
    Deng H; Pei Y; Xu X; Du X; Xue Q; Gao Z; Shu P; Wu Y; Liu Z; Jian Y; Wu M; Wang Y; Li Z; Pirrello J; Bouzayen M; Deng W; Hong Y; Liu M
    New Phytol; 2024 Apr; 242(2):592-609. PubMed ID: 38402567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic suppression analysis in novel vacuolar processing enzymes reveals their roles in controlling sugar accumulation in tomato fruits.
    Ariizumi T; Higuchi K; Arakaki S; Sano T; Asamizu E; Ezura H
    J Exp Bot; 2011 May; 62(8):2773-86. PubMed ID: 21282322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.