These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 28270532)

  • 1. Autophagy-Dependent Beneficial Effects of Exercise.
    Halling JF; Pilegaard H
    Cold Spring Harb Perspect Med; 2017 Aug; 7(8):. PubMed ID: 28270532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The regulation of autophagy during exercise in skeletal muscle.
    Vainshtein A; Hood DA
    J Appl Physiol (1985); 2016 Mar; 120(6):664-73. PubMed ID: 26679612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal muscle, autophagy, and physical activity: the ménage à trois of metabolic regulation in health and disease.
    Vainshtein A; Grumati P; Sandri M; Bonaldo P
    J Mol Med (Berl); 2014 Feb; 92(2):127-37. PubMed ID: 24271008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of β-adrenergic signaling in PGC-1α-mediated adaptations in mouse skeletal muscle.
    Brandt N; Nielsen L; Thiellesen Buch B; Gudiksen A; Ringholm S; Hellsten Y; Bangsbo J; Pilegaard H
    Am J Physiol Endocrinol Metab; 2018 Jan; 314(1):E1-E20. PubMed ID: 28874356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Nuclear Receptor Nor-1 Is a Pleiotropic Regulator of Exercise-Induced Adaptations.
    Pearen MA; Muscat GEO
    Exerc Sport Sci Rev; 2018 Apr; 46(2):97-104. PubMed ID: 29346164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equine skeletal muscle adaptations to exercise and training: evidence of differential regulation of autophagosomal and mitochondrial components.
    Bryan K; McGivney BA; Farries G; McGettigan PA; McGivney CL; Gough KF; MacHugh DE; Katz LM; Hill EW
    BMC Genomics; 2017 Aug; 18(1):595. PubMed ID: 28793853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Eating for Muscle Fitness: Autophagy in the Control of Energy Metabolism.
    Sebastián D; Zorzano A
    Dev Cell; 2020 Jul; 54(2):268-281. PubMed ID: 32693059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autophagic cellular responses to physical exercise in skeletal muscle.
    Tam BT; Siu PM
    Sports Med; 2014 May; 44(5):625-40. PubMed ID: 24549475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AMPK binds to Sestrins and mediates the effect of exercise to increase insulin-sensitivity through autophagy.
    Liu X; Niu Y; Yuan H; Huang J; Fu L
    Metabolism; 2015 Jun; 64(6):658-65. PubMed ID: 25672217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autophagic adaptation is associated with exercise-induced fibre-type shifting in skeletal muscle.
    Tam BT; Pei XM; Yu AP; Sin TK; Leung KK; Au KK; Chong JT; Yung BY; Yip SP; Chan LW; Wong CS; Siu PM
    Acta Physiol (Oxf); 2015 Jun; 214(2):221-36. PubMed ID: 25847142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term metabolic and skeletal muscle adaptations to short-sprint training: implications for sprint training and tapering.
    Ross A; Leveritt M
    Sports Med; 2001; 31(15):1063-82. PubMed ID: 11735686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of gene expression and mitochondrial biogenesis in the muscular adaptation to endurance exercise.
    Joseph AM; Pilegaard H; Litvintsev A; Leick L; Hood DA
    Essays Biochem; 2006; 42():13-29. PubMed ID: 17144877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and cellular adaptation of muscle in response to physical training.
    Booth FW; Tseng BS; Flück M; Carson JA
    Acta Physiol Scand; 1998 Mar; 162(3):343-50. PubMed ID: 9578380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Moderate, but Not Excessive, Training Attenuates Autophagy Machinery in Metabolic Tissues.
    da Rocha AL; Pinto AP; Morais GP; Marafon BB; Rovina RL; Veras ASC; Teixeira GR; Pauli JR; de Moura LP; Cintra DE; Ropelle ER; Rivas DA; da Silva ASR
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33182536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal muscle metabolic adaptations to endurance exercise training are attainable in mice with simvastatin treatment.
    Southern WM; Nichenko AS; Shill DD; Spencer CC; Jenkins NT; McCully KK; Call JA
    PLoS One; 2017; 12(2):e0172551. PubMed ID: 28207880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ramping up the signal: promoting endurance training adaptation in skeletal muscle by nutritional manipulation.
    Hawley JA; Morton JP
    Clin Exp Pharmacol Physiol; 2014 Aug; 41(8):608-13. PubMed ID: 25142094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli.
    Flück M
    J Exp Biol; 2006 Jun; 209(Pt 12):2239-48. PubMed ID: 16731801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular adaptation to repeated eccentric exercise-induced muscle damage.
    Stupka N; Tarnopolsky MA; Yardley NJ; Phillips SM
    J Appl Physiol (1985); 2001 Oct; 91(4):1669-78. PubMed ID: 11568149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The molecular bases of training adaptation.
    Coffey VG; Hawley JA
    Sports Med; 2007; 37(9):737-63. PubMed ID: 17722947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The repeated bout effect and heat shock proteins: intramuscular HSP27 and HSP70 expression following two bouts of eccentric exercise in humans.
    Thompson HS; Clarkson PM; Scordilis SP
    Acta Physiol Scand; 2002 Jan; 174(1):47-56. PubMed ID: 11851596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.