BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 28270611)

  • 21. Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1.
    van Rongen M; Bennett T; Ticchiarelli F; Leyser O
    PLoS Genet; 2019 Mar; 15(3):e1008023. PubMed ID: 30865619
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutation of the cytosolic ribosomal protein-encoding RPS10B gene affects shoot meristematic function in Arabidopsis.
    Stirnberg P; Liu JP; Ward S; Kendall SL; Leyser O
    BMC Plant Biol; 2012 Sep; 12():160. PubMed ID: 22963533
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutations in the Diageotropica (Dgt) gene uncouple patterned cell division during lateral root initiation from proliferative cell division in the pericycle.
    Ivanchenko MG; Coffeen WC; Lomax TL; Dubrovsky JG
    Plant J; 2006 May; 46(3):436-47. PubMed ID: 16623904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Initiation of aboveground organ primordia depends on combined action of auxin, ERECTA family genes, and PINOID.
    DeGennaro D; Urquidi Camacho RA; Zhang L; Shpak ED
    Plant Physiol; 2022 Aug; 190(1):794-812. PubMed ID: 35703946
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MAB4-induced auxin sink generates local auxin gradients in Arabidopsis organ formation.
    Furutani M; Nakano Y; Tasaka M
    Proc Natl Acad Sci U S A; 2014 Jan; 111(3):1198-203. PubMed ID: 24395791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A molecular framework for auxin-mediated initiation of flower primordia.
    Yamaguchi N; Wu MF; Winter CM; Berns MC; Nole-Wilson S; Yamaguchi A; Coupland G; Krizek BA; Wagner D
    Dev Cell; 2013 Feb; 24(3):271-82. PubMed ID: 23375585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DORNRÖSCHEN-LIKE expression marks Arabidopsis floral organ founder cells and precedes auxin response maxima.
    Chandler JW; Jacobs B; Cole M; Comelli P; Werr W
    Plant Mol Biol; 2011 May; 76(1-2):171-85. PubMed ID: 21547450
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The polar auxin transport inhibitor N-1-naphthylphthalamic acid disrupts leaf initiation, KNOX protein regulation, and formation of leaf margins in maize.
    Scanlon MJ
    Plant Physiol; 2003 Oct; 133(2):597-605. PubMed ID: 14500790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families.
    Pattison RJ; Catalá C
    Plant J; 2012 May; 70(4):585-98. PubMed ID: 22211518
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Auxin patterns Solanum lycopersicum leaf morphogenesis.
    Koenig D; Bayer E; Kang J; Kuhlemeier C; Sinha N
    Development; 2009 Sep; 136(17):2997-3006. PubMed ID: 19666826
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple Auxin-Response Regulators Enable Stability and Variability in Leaf Development.
    Israeli A; Capua Y; Shwartz I; Tal L; Meir Z; Levy M; Bar M; Efroni I; Ori N
    Curr Biol; 2019 Jun; 29(11):1746-1759.e5. PubMed ID: 31104930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of lamina outgrowth following Solanum lycopersicum AUXIN RESPONSE FACTOR 10 (SlARF10) derepression.
    Hendelman A; Buxdorf K; Stav R; Kravchik M; Arazi T
    Plant Mol Biol; 2012 Apr; 78(6):561-76. PubMed ID: 22287097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development.
    Mounet F; Moing A; Kowalczyk M; Rohrmann J; Petit J; Garcia V; Maucourt M; Yano K; Deborde C; Aoki K; Bergès H; Granell A; Fernie AR; Bellini C; Rothan C; Lemaire-Chamley M
    J Exp Bot; 2012 Aug; 63(13):4901-17. PubMed ID: 22844095
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport.
    Benjamins R; Quint A; Weijers D; Hooykaas P; Offringa R
    Development; 2001 Oct; 128(20):4057-67. PubMed ID: 11641228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vacuolar SNAREs function in the formation of the leaf vascular network by regulating auxin distribution.
    Shirakawa M; Ueda H; Shimada T; Nishiyama C; Hara-Nishimura I
    Plant Cell Physiol; 2009 Jul; 50(7):1319-28. PubMed ID: 19493960
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Auxin Response Dynamics During Wild-Type and entire Flower Development in Tomato.
    Goldental-Cohen S; Israeli A; Ori N; Yasuor H
    Plant Cell Physiol; 2017 Oct; 58(10):1661-1672. PubMed ID: 29016944
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Suppression of sucrose synthase affects auxin signaling and leaf morphology in tomato.
    Goren S; Lugassi N; Stein O; Yeselson Y; Schaffer AA; David-Schwartz R; Granot D
    PLoS One; 2017; 12(8):e0182334. PubMed ID: 28787452
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arabidopsis JAGGED LATERAL ORGANS acts with ASYMMETRIC LEAVES2 to coordinate KNOX and PIN expression in shoot and root meristems.
    Rast MI; Simon R
    Plant Cell; 2012 Jul; 24(7):2917-33. PubMed ID: 22822207
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PIN it on auxin: the role of PIN1 and PAT in tomato development.
    Kharshiing EV; Kumar GP; Sharma R
    Plant Signal Behav; 2010 Nov; 5(11):1379-83. PubMed ID: 20980815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stem cell activation by light guides plant organogenesis.
    Yoshida S; Mandel T; Kuhlemeier C
    Genes Dev; 2011 Jul; 25(13):1439-50. PubMed ID: 21724835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.