These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
28. DRUDIT: web-based DRUgs DIscovery Tools to design small molecules as modulators of biological targets. Lauria A; Mannino S; Gentile C; Mannino G; Martorana A; Peri D Bioinformatics; 2020 Mar; 36(5):1562-1569. PubMed ID: 31605102 [TBL] [Abstract][Full Text] [Related]
29. Ligand cluster-based protein network and ePlatton, a multi-target ligand finder. Du Y; Shi T J Cheminform; 2016; 8():23. PubMed ID: 27143991 [TBL] [Abstract][Full Text] [Related]
30. Comparison of ultra-fast 2D and 3D ligand and target descriptors for side effect prediction and network analysis in polypharmacology. Cortés-Cabrera A; Morris GM; Finn PW; Morreale A; Gago F Br J Pharmacol; 2013 Oct; 170(3):557-67. PubMed ID: 23826885 [TBL] [Abstract][Full Text] [Related]
31. Chemogenomic data analysis: prediction of small-molecule targets and the advent of biological fingerprint. Bender A; Young DW; Jenkins JL; Serrano M; Mikhailov D; Clemons PA; Davies JW Comb Chem High Throughput Screen; 2007 Sep; 10(8):719-31. PubMed ID: 18045083 [TBL] [Abstract][Full Text] [Related]
32. Exploring Polypharmacology in Drug Discovery and Repurposing Using the CANDO Platform. Chopra G; Samudrala R Curr Pharm Des; 2016; 22(21):3109-23. PubMed ID: 27013226 [TBL] [Abstract][Full Text] [Related]
33. One molecular fingerprint to rule them all: drugs, biomolecules, and the metabolome. Capecchi A; Probst D; Reymond JL J Cheminform; 2020 Jun; 12(1):43. PubMed ID: 33431010 [TBL] [Abstract][Full Text] [Related]
34. Multi-target-based polypharmacology prediction (mTPP): An approach using virtual screening and machine learning for multi-target drug discovery. Liu K; Chen X; Ren Y; Liu C; Lv T; Liu Y; Zhang Y Chem Biol Interact; 2022 Dec; 368():110239. PubMed ID: 36309139 [TBL] [Abstract][Full Text] [Related]
35. Atom pair 2D-fingerprints perceive 3D-molecular shape and pharmacophores for very fast virtual screening of ZINC and GDB-17. Awale M; Reymond JL J Chem Inf Model; 2014 Jul; 54(7):1892-907. PubMed ID: 24988038 [TBL] [Abstract][Full Text] [Related]
36. Exploring the chemical space of known and unknown organic small molecules at www.gdb.unibe.ch. Reymond JL; Blum LC; van Deursen R Chimia (Aarau); 2011; 65(11):863-7. PubMed ID: 22289373 [TBL] [Abstract][Full Text] [Related]
37. KiSSim: Predicting Off-Targets from Structural Similarities in the Kinome. Sydow D; Aßmann E; Kooistra AJ; Rippmann F; Volkamer A J Chem Inf Model; 2022 May; 62(10):2600-2616. PubMed ID: 35536589 [TBL] [Abstract][Full Text] [Related]
38. Tools for in silico target fishing. Cereto-Massagué A; Ojeda MJ; Valls C; Mulero M; Pujadas G; Garcia-Vallve S Methods; 2015 Jan; 71():98-103. PubMed ID: 25277948 [TBL] [Abstract][Full Text] [Related]
39. In Silico target fishing: addressing a "Big Data" problem by ligand-based similarity rankings with data fusion. Liu X; Xu Y; Li S; Wang Y; Peng J; Luo C; Luo X; Zheng M; Chen K; Jiang H J Cheminform; 2014; 6():33. PubMed ID: 24976868 [TBL] [Abstract][Full Text] [Related]
40. QSAR-derived affinity fingerprints (part 1): fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping. Škuta C; Cortés-Ciriano I; Dehaen W; Kříž P; van Westen GJP; Tetko IV; Bender A; Svozil D J Cheminform; 2020 May; 12(1):39. PubMed ID: 33431038 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]