These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 28270999)
1. Fully automated diagnosis of papilledema through robust extraction of vascular patterns and ocular pathology from fundus photographs. Fatima KN; Hassan T; Akram MU; Akhtar M; Butt WH Biomed Opt Express; 2017 Feb; 8(2):1005-1024. PubMed ID: 28270999 [TBL] [Abstract][Full Text] [Related]
2. Decision Support System for Detection of Papilledema through Fundus Retinal Images. Akbar S; Akram MU; Sharif M; Tariq A; Yasin UU J Med Syst; 2017 Apr; 41(4):66. PubMed ID: 28283997 [TBL] [Abstract][Full Text] [Related]
3. Automatic detection of papilledema through fundus retinal images using deep learning. Saba T; Akbar S; Kolivand H; Ali Bahaj S Microsc Res Tech; 2021 Dec; 84(12):3066-3077. PubMed ID: 34236733 [TBL] [Abstract][Full Text] [Related]
4. Data on fundus images for vessels segmentation, detection of hypertensive retinopathy, diabetic retinopathy and papilledema. Akram MU; Akbar S; Hassan T; Khawaja SG; Yasin U; Basit I Data Brief; 2020 Apr; 29():105282. PubMed ID: 32154339 [TBL] [Abstract][Full Text] [Related]
5. Automated analysis of optic nerve images for detection and staging of papilledema. Echegaray S; Zamora G; Yu H; Luo W; Soliz P; Kardon R Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7470-8. PubMed ID: 21862651 [TBL] [Abstract][Full Text] [Related]
6. Arteriovenous ratio and papilledema based hybrid decision support system for detection and grading of hypertensive retinopathy. Akbar S; Akram MU; Sharif M; Tariq A; Yasin UU Comput Methods Programs Biomed; 2018 Feb; 154():123-141. PubMed ID: 29249337 [TBL] [Abstract][Full Text] [Related]
7. Automatic computer-aided analysis of optic disc pallor in fundus photographs. Yang HK; Oh JE; Han SB; Kim KG; Hwang JM Acta Ophthalmol; 2019 Jun; 97(4):e519-e525. PubMed ID: 30407733 [TBL] [Abstract][Full Text] [Related]
8. Automated diagnosis of Age-related Macular Degeneration using greyscale features from digital fundus images. Mookiah MR; Acharya UR; Koh JE; Chandran V; Chua CK; Tan JH; Lim CM; Ng EY; Noronha K; Tong L; Laude A Comput Biol Med; 2014 Oct; 53():55-64. PubMed ID: 25127409 [TBL] [Abstract][Full Text] [Related]
9. Artificial Intelligence to Detect Papilledema from Ocular Fundus Photographs. Milea D; Najjar RP; Zhubo J; Ting D; Vasseneix C; Xu X; Aghsaei Fard M; Fonseca P; Vanikieti K; Lagrèze WA; La Morgia C; Cheung CY; Hamann S; Chiquet C; Sanda N; Yang H; Mejico LJ; Rougier M-B; Kho R; Thi Ha Chau T; Singhal S; Gohier P; Clermont-Vignal C; Cheng C-Y; Jonas JB; Yu-Wai-Man P; Fraser CL; Chen JJ; Ambika S; Miller NR; Liu Y; Newman NJ; Wong TY; Biousse V; N Engl J Med; 2020 Apr; 382(18):1687-1695. PubMed ID: 32286748 [TBL] [Abstract][Full Text] [Related]
10. Automated Segmentation and Quantification of Drusen in Fundus and Optical Coherence Tomography Images for Detection of ARMD. Khalid S; Akram MU; Hassan T; Jameel A; Khalil T J Digit Imaging; 2018 Aug; 31(4):464-476. PubMed ID: 29204763 [TBL] [Abstract][Full Text] [Related]
11. Deep Learning System Outperforms Clinicians in Identifying Optic Disc Abnormalities. Vasseneix C; Nusinovici S; Xu X; Hwang JM; Hamann S; Chen JJ; Loo JL; Milea L; Tan KBK; Ting DSW; Liu Y; Newman NJ; Biousse V; Wong TY; Milea D; Najjar RP; J Neuroophthalmol; 2023 Jun; 43(2):159-167. PubMed ID: 36719740 [TBL] [Abstract][Full Text] [Related]
12. Application of a Deep Learning System to Detect Papilledema on Nonmydriatic Ocular Fundus Photographs in an Emergency Department. Biousse V; Najjar RP; Tang Z; Lin MY; Wright DW; Keadey MT; Wong TY; Bruce BB; Milea D; Newman NJ; Am J Ophthalmol; 2024 May; 261():199-207. PubMed ID: 37926337 [TBL] [Abstract][Full Text] [Related]
13. A Deep Learning Approach for Accurate Discrimination Between Optic Disc Drusen and Papilledema on Fundus Photographs. Sathianvichitr K; Najjar RP; Zhiqun T; Fraser JA; Yau CWL; Girard MJA; Costello F; Lin MY; Lagrèze WA; Vignal-Clermont C; Fraser CL; Hamann S; Newman NJ; Biousse V; Milea D; J Neuroophthalmol; 2024 Aug; ():. PubMed ID: 39090774 [TBL] [Abstract][Full Text] [Related]
14. Blood Vessel Segmentation of Fundus Images by Major Vessel Extraction and Subimage Classification. Roychowdhury S; Koozekanani DD; Parhi KK IEEE J Biomed Health Inform; 2015 May; 19(3):1118-28. PubMed ID: 25014980 [TBL] [Abstract][Full Text] [Related]
15. Automatic segmentation of pigment deposits in retinal fundus images of Retinitis Pigmentosa. Brancati N; Frucci M; Gragnaniello D; Riccio D; Di Iorio V; Di Perna L Comput Med Imaging Graph; 2018 Jun; 66():73-81. PubMed ID: 29573581 [TBL] [Abstract][Full Text] [Related]
16. Optic disc detection in retinal fundus images using gravitational law-based edge detection. Alshayeji M; Al-Roomi SA; Abed S Med Biol Eng Comput; 2017 Jun; 55(6):935-948. PubMed ID: 27638111 [TBL] [Abstract][Full Text] [Related]
17. Optic nerve head segmentation using fundus images and optical coherence tomography images for glaucoma detection. Ganesh Babu TR; Shenbaga Devi S; Venkatesh R Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2015 Dec; 159(4):607-15. PubMed ID: 26498216 [TBL] [Abstract][Full Text] [Related]
18. Retinal image analysis for disease screening through local tetra patterns. Porwal P; Pachade S; Kokare M; Giancardo L; Mériaudeau F Comput Biol Med; 2018 Nov; 102():200-210. PubMed ID: 30308336 [TBL] [Abstract][Full Text] [Related]
19. Glaucoma detection using novel optic disc localization, hybrid feature set and classification techniques. Akram MU; Tariq A; Khalid S; Javed MY; Abbas S; Yasin UU Australas Phys Eng Sci Med; 2015 Dec; 38(4):643-55. PubMed ID: 26399880 [TBL] [Abstract][Full Text] [Related]
20. Segmentation of the optic disc, macula and vascular arch in fundus photographs. Niemeijer M; Abràmoff MD; van Ginneken B IEEE Trans Med Imaging; 2007 Jan; 26(1):116-27. PubMed ID: 17243590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]