BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28271012)

  • 1. Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography.
    Abdolmanafi A; Duong L; Dahdah N; Cheriet F
    Biomed Opt Express; 2017 Feb; 8(2):1203-1220. PubMed ID: 28271012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An automatic diagnostic system of coronary artery lesions in Kawasaki disease using intravascular optical coherence tomography imaging.
    Abdolmanafi A; Cheriet F; Duong L; Ibrahim R; Dahdah N
    J Biophotonics; 2020 Jan; 13(1):e201900112. PubMed ID: 31423740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic diagnosis of macular diseases from OCT volume based on its two-dimensional feature map and convolutional neural network with attention mechanism.
    Sun Y; Zhang H; Yao X
    J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32940026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of coronary artery pathological formations from OCT imaging using deep learning.
    Abdolmanafi A; Duong L; Dahdah N; Adib IR; Cheriet F
    Biomed Opt Express; 2018 Oct; 9(10):4936-4960. PubMed ID: 30319913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-class machine learning classification of skin tissue based on manually scanned optical coherence tomography imaging.
    Liu X; Ouellette S; Jamgochian M; Liu Y; Rao B
    Sci Rep; 2023 Jan; 13(1):867. PubMed ID: 36650283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep learning-based model for characterization of atherosclerotic plaque in coronary arteries using optical coherence tomography  images.
    Abdolmanafi A; Duong L; Ibrahim R; Dahdah N
    Med Phys; 2021 Jul; 48(7):3511-3524. PubMed ID: 33914917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilevel Deep Feature Generation Framework for Automated Detection of Retinal Abnormalities Using OCT Images.
    Barua PD; Chan WY; Dogan S; Baygin M; Tuncer T; Ciaccio EJ; Islam N; Cheong KH; Shahid ZS; Acharya UR
    Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated detection of vulnerable plaque in intravascular ultrasound images.
    Jun TJ; Kang SJ; Lee JG; Kweon J; Na W; Kang D; Kim D; Kim D; Kim YH
    Med Biol Eng Comput; 2019 Apr; 57(4):863-876. PubMed ID: 30426362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrimination of multiple sclerosis using scanning laser ophthalmoscopy images with autoencoder-based feature extraction.
    Aghababaei A; Arian R; Soltanipour A; Ashtari F; Rabbani H; Kafieh R
    Mult Scler Relat Disord; 2024 Jun; 88():105743. PubMed ID: 38945032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of coronary arterial lesions due to Kawasaki disease using optical coherence tomography.
    Kakimoto N; Suzuki H; Kubo T; Suenaga T; Takeuchi T; Shibuta S; Ino Y; Akasaka T; Yoshikawa N
    Can J Cardiol; 2014 Aug; 30(8):956.e7-9. PubMed ID: 24999171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography.
    Perdomo O; Rios H; Rodríguez FJ; Otálora S; Meriaudeau F; Müller H; González FA
    Comput Methods Programs Biomed; 2019 Sep; 178():181-189. PubMed ID: 31416547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coronary Wall Structural Changes in Patients With Kawasaki Disease: New Insights From Optical Coherence Tomography (OCT).
    Dionne A; Ibrahim R; Gebhard C; Bakloul M; Selly JB; Leye M; Déry J; Lapierre C; Girard P; Fournier A; Dahdah N
    J Am Heart Assoc; 2015 May; 4(5):. PubMed ID: 25991013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Urban Tree Species Classification Using a WorldView-2/3 and LiDAR Data Fusion Approach and Deep Learning.
    Hartling S; Sagan V; Sidike P; Maimaitijiang M; Carron J
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30875732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic coronary plaque detection, classification, and stenosis grading using deep learning and radiomics on computed tomography angiography images: a multi-center multi-vendor study.
    Jin X; Li Y; Yan F; Liu Y; Zhang X; Li T; Yang L; Chen H
    Eur Radiol; 2022 Aug; 32(8):5276-5286. PubMed ID: 35290509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic diagnosis of abnormal macula in retinal optical coherence tomography images using wavelet-based convolutional neural network features and random forests classifier.
    Rasti R; Mehridehnavi A; Rabbani H; Hajizadeh F
    J Biomed Opt; 2018 Mar; 23(3):1-10. PubMed ID: 29564864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lumen-intima and media-adventitia segmentation in IVUS images using supervised classifications of arterial layers and morphological structures.
    Lo Vercio L; Del Fresno M; Larrabide I
    Comput Methods Programs Biomed; 2019 Aug; 177():113-121. PubMed ID: 31319939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RF-CNN-F: random forest with convolutional neural network features for coronary artery disease diagnosis based on cardiac magnetic resonance.
    Khozeimeh F; Sharifrazi D; Izadi NH; Joloudari JH; Shoeibi A; Alizadehsani R; Tartibi M; Hussain S; Sani ZA; Khodatars M; Sadeghi D; Khosravi A; Nahavandi S; Tan RS; Acharya UR; Islam SMS
    Sci Rep; 2022 Jul; 12(1):11178. PubMed ID: 35778476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Identification of Hookahs (Waterpipes) on Instagram: An Application in Feature Extraction Using Convolutional Neural Network and Support Vector Machine Classification.
    Zhang Y; Allem JP; Unger JB; Boley Cruz T
    J Med Internet Res; 2018 Nov; 20(11):e10513. PubMed ID: 30452385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intra-Slice Motion Correction of Intravascular OCT Images Using Deep Features.
    Abdolmanafi A; Duong L; Dahdah N; Cheriet F
    IEEE J Biomed Health Inform; 2019 May; 23(3):931-941. PubMed ID: 30387755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmentation of mouse skin layers in optical coherence tomography image data using deep convolutional neural networks.
    Kepp T; Droigk C; Casper M; Evers M; Hüttmann G; Salma N; Manstein D; Heinrich MP; Handels H
    Biomed Opt Express; 2019 Jul; 10(7):3484-3496. PubMed ID: 31467791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.