These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28271014)

  • 1. CMOS based image cytometry for detection of phytoplankton in ballast water.
    Pérez JM; Jofre M; Martínez P; Yáñez MA; Catalan V; Parker A; Veldhuis M; Pruneri V
    Biomed Opt Express; 2017 Feb; 8(2):1240-1249. PubMed ID: 28271014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal changes in phytoplankton biomass and cellular properties; implications for the IMO ballast water convention.
    Trindade de Castro MC; Veldhuis MJW
    Environ Technol; 2019 Apr; 40(11):1455-1466. PubMed ID: 29308732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incubation in light versus dark affects the vitality of UV-irradiated Tetraselmis suecica differently: A flow cytometric study.
    Olsen RO; Lindivat M; Larsen A; Thuestad G; Hoell IA
    Mar Pollut Bull; 2019 Dec; 149():110528. PubMed ID: 31470209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultraviolet radiation as a ballast water treatment strategy: Inactivation of phytoplankton measured with flow cytometry.
    Olsen RO; Hoffmann F; Hess-Erga OK; Larsen A; Thuestad G; Hoell IA
    Mar Pollut Bull; 2016 Feb; 103(1-2):270-275. PubMed ID: 26719070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of six different ballast water treatment systems based on UV radiation, electrochlorination and chlorine dioxide.
    Stehouwer PP; Buma A; Peperzak L
    Environ Technol; 2015; 36(13-16):2094-104. PubMed ID: 25704551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of imaging-in-flow system (FlowCAM) for systematic ballast water management.
    Romero-Martínez L; van Slooten C; Nebot E; Acevedo-Merino A; Peperzak L
    Sci Total Environ; 2017 Dec; 603-604():550-561. PubMed ID: 28645053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative feasibility study on retrofitting ballast water treatment system for a bulk carrier.
    Jee J; Lee S
    Mar Pollut Bull; 2017 Jun; 119(2):17-22. PubMed ID: 28347495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zooplankton sensitivity and phytoplankton regrowth for ballast water treatment with advanced oxidation processes.
    García-Garay J; Franco-Herrera A; Machuca-Martinez F
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):35008-35014. PubMed ID: 29804250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Risk assessment of marine environments from ballast water discharges with laboratory-scale hydroxyl radicals treatment in Tianjin Harbor, China.
    Zhang N; Zhang Y; Bai M; Zhang Z; Chen C; Meng X
    J Environ Manage; 2014 Dec; 145():122-8. PubMed ID: 25016101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the efficacy of electrolytic chlorination for ballast water treatment by adding carbon dioxide.
    Cha HG; Seo MH; Lee HY; Lee JH; Lee DS; Shin K; Choi KH
    Mar Pollut Bull; 2015 Jun; 95(1):315-23. PubMed ID: 25841887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Virtual Filtering Approach to Discriminate Microalgae by Spectral Flow Cytometer.
    Barteneva NS; Kussanova A; Dashkova V; Meirkhanova A; Vorobjev IA
    Methods Mol Biol; 2023; 2635():23-40. PubMed ID: 37074655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of didecyldimethylammonium chloride as a ballast water treatment method.
    van Slooten C; Peperzak L; Buma AG
    Environ Technol; 2015; 36(1-4):435-49. PubMed ID: 25182049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different approaches and limitations for testing phytoplankton viability in natural assemblies and treated ballast water.
    Castro MCT; Veldhuis MJW; Fileman TW; Hall-Spencer JM
    Mar Pollut Bull; 2018 Dec; 137():172-179. PubMed ID: 30503423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the performance of four indicative analysis devices for ballast water compliance monitoring, considering organisms in the size range ≥10 to <50 μm.
    Casas-Monroy O; Kydd J; Rozon RM; Bailey SA
    J Environ Manage; 2022 Sep; 317():115300. PubMed ID: 35623126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying indicatively living phytoplankton cells in ballast water samples--recommendations for Port State Control.
    Gollasch S; David M; Francé J; Mozetič P
    Mar Pollut Bull; 2015 Dec; 101(2):768-75. PubMed ID: 26454632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow cytometric applicability to evaluate UV inactivation of phytoplankton in marine water samples.
    Olsen RO; Hess-Erga OK; Larsen A; Thuestad G; Tobiesen A; Hoell IA
    Mar Pollut Bull; 2015 Jul; 96(1-2):279-85. PubMed ID: 25960276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoplankton monitoring by high performance flow cytometry: a successful approach?
    Rutten TP; Sandee B; Hofman AR
    Cytometry A; 2005 Mar; 64(1):16-26. PubMed ID: 15688354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of standard test organisms for sound validation of UV-based ballast water treatment systems.
    Lundgreen K; Holbech H; Pedersen KL; Petersen GI; Andreasen RR; George C; Drillet G; Andersen M
    Mar Pollut Bull; 2019 Jul; 144():253-264. PubMed ID: 31179995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regrowth in ship's ballast water tanks: Think again!
    Grob C; Pollet BG
    Mar Pollut Bull; 2016 Aug; 109(1):46-48. PubMed ID: 27184126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and first results of CytoBuoy: a wireless flow cytometer for in situ analysis of marine and fresh waters.
    Dubelaar GB; Gerritzen PL; Beeker AE; Jonker RR; Tangen K
    Cytometry; 1999 Dec; 37(4):247-54. PubMed ID: 10547609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.