These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28271114)

  • 1. Packing fractal Sierpiński triangles into one-dimensional crystals via a templating method.
    Li N; Gu G; Zhang X; Song D; Zhang Y; Teo BK; Peng LM; Hou S; Wang Y
    Chem Commun (Camb); 2017 Mar; 53(24):3469-3472. PubMed ID: 28271114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling Molecular Growth between Fractals and Crystals on Surfaces.
    Zhang X; Li N; Gu GC; Wang H; Nieckarz D; Szabelski P; He Y; Wang Y; Xie C; Shen ZY; Lü JT; Tang H; Peng LM; Hou SM; Wu K; Wang YF
    ACS Nano; 2015 Dec; 9(12):11909-15. PubMed ID: 26502984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Au-Thiolate Chains to Thioether Sierpiński Triangles: The Versatile Surface Chemistry of 1,3,5-Tris(4-mercaptophenyl)benzene on Au(111).
    Rastgoo-Lahrood A; Martsinovich N; Lischka M; Eichhorn J; Szabelski P; Nieckarz D; Strunskus T; Das K; Schmittel M; Heckl WM; Lackinger M
    ACS Nano; 2016 Dec; 10(12):10901-10911. PubMed ID: 28024384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algorithmic self-assembly of DNA Sierpinski triangles.
    Rothemund PW; Papadakis N; Winfree E
    PLoS Biol; 2004 Dec; 2(12):e424. PubMed ID: 15583715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembling molecular Sierpiński triangle fractals.
    Shang J; Wang Y; Chen M; Dai J; Zhou X; Kuttner J; Hilt G; Shao X; Gottfried JM; Wu K
    Nat Chem; 2015 May; 7(5):389-93. PubMed ID: 25901816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-surface construction of a metal-organic Sierpiński triangle.
    Sun Q; Cai L; Ma H; Yuan C; Xu W
    Chem Commun (Camb); 2015 Sep; 51(75):14164-6. PubMed ID: 26247871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of the self-assembly of simple molecular bricks into Sierpiński triangles.
    Nieckarz D; Szabelski P
    Chem Commun (Camb); 2014 Jul; 50(52):6843-5. PubMed ID: 24836516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step multicomponent self-assembly of a first-generation Sierpiński triangle: from fractal design to chemical reality.
    Sarkar R; Guo K; Moorefield CN; Saunders MJ; Wesdemiotis C; Newkome GR
    Angew Chem Int Ed Engl; 2014 Nov; 53(45):12182-5. PubMed ID: 25214464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-dependent structural behavior of self-avoiding walks on three-dimensional Sierpinski sponges.
    Fritsche M; Heermann DW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051119. PubMed ID: 20866197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability and structural phase transitions of cobalt porphyrin adlayers on Au(100) surfaces.
    Yoshimoto S
    Phys Chem Chem Phys; 2013 Aug; 15(30):12504-9. PubMed ID: 23689504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-organized stiffness in regular fractal polymer structures.
    Werner M; Sommer JU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051802. PubMed ID: 21728562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of large ordered domains in benzenethiol self-assembled monolayers on Au(111) observed by scanning tunneling microscopy.
    Kang H; Park T; Choi I; Lee Y; Ito E; Hara M; Noh J
    Ultramicroscopy; 2009 Jul; 109(8):1011-4. PubMed ID: 19395174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-dimensional supramolecular surface structures: 1,4-diisocyanobenzene on Au(111) surfaces.
    Boscoboinik JA; Calaza FC; Habeeb Z; Bennett DW; Stacchiola DJ; Purino MA; Tysoe WT
    Phys Chem Chem Phys; 2010 Oct; 12(37):11624-9. PubMed ID: 20714484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-supported metal-organic frameworks with geometric topological diversity via scanning tunneling microscopy.
    Zhao X; Miao X
    iScience; 2024 Apr; 27(4):109392. PubMed ID: 38500826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum critical behavior of the quantum Ising model on fractal lattices.
    Yi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012118. PubMed ID: 25679581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-dependent structural behavior of self-avoiding walks on Sierpinski carpets.
    Fritsche M; Roman HE; Porto M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061101. PubMed ID: 18233808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust Sierpiński triangle fractals on symmetry-mismatched Ag(100).
    Zhang X; Li N; Liu L; Gu G; Li C; Tang H; Peng L; Hou S; Wang Y
    Chem Commun (Camb); 2016 Aug; 52(69):10578-81. PubMed ID: 27498982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical control of the structure of two-dimensional supramolecular organization consisting of phthalocyanine and porphyrin on a gold single-crystal surface.
    Suto K; Yoshimoto S; Itaya K
    Langmuir; 2006 Dec; 22(25):10766-76. PubMed ID: 17129058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic and structural study of Pt-modified Au vicinal surfaces: a model system for Pt-Au catalysts.
    Prieto MJ; Carbonio EA; Fatayer S; Landers R; de Siervo A
    Phys Chem Chem Phys; 2014 Jul; 16(26):13329-39. PubMed ID: 24870371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of supramolecular nanobelt arrays consisting of cobalt(II) "picket-fence" porphyrin on Au surfaces.
    Yoshimoto S; Sato K; Sugawara S; Chen Y; Ito O; Sawaguchi T; Niwa O; Itaya K
    Langmuir; 2007 Jan; 23(2):809-16. PubMed ID: 17209638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.