These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28271118)

  • 1. A passive microfluidic system based on step emulsification allows the generation of libraries of nanoliter-sized droplets from microliter droplets of varying and known concentrations of a sample.
    Postek W; Kaminski TS; Garstecki P
    Lab Chip; 2017 Mar; 17(7):1323-1331. PubMed ID: 28271118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grooved step emulsification systems optimize the throughput of passive generation of monodisperse emulsions.
    Opalski AS; Makuch K; Lai YK; Derzsi L; Garstecki P
    Lab Chip; 2019 Mar; 19(7):1183-1192. PubMed ID: 30843018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-liter droplet libraries from a pipette: step emulsificator that stabilizes droplet volume against variation in flow rate.
    Dutka F; Opalski AS; Garstecki P
    Lab Chip; 2016 May; 16(11):2044-9. PubMed ID: 27161389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Centrifugal Step Emulsification: How Buoyancy Enables High Generation Rates of Monodisperse Droplets.
    Schulz M; von Stetten F; Zengerle R; Paust N
    Langmuir; 2019 Jul; 35(30):9809-9815. PubMed ID: 31283246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated generation of libraries of nL droplets.
    Kaminski TS; Jakiela S; Czekalska MA; Postek W; Garstecki P
    Lab Chip; 2012 Oct; 12(20):3995-4002. PubMed ID: 22968539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system.
    Tan YC; Lee AP
    Lab Chip; 2005 Oct; 5(10):1178-83. PubMed ID: 16175277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Coupling of Step Emulsification and Deterministic Lateral Displacement for Producing Satellite-Free Droplets and Particles.
    Ji G; Kanno Y; Nisisako T
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuna-step: tunable parallelized step emulsification for the generation of droplets with dynamic volume control to 3D print functionally graded porous materials.
    Nalin F; Tirelli MC; Garstecki P; Postek W; Costantini M
    Lab Chip; 2023 Dec; 24(1):113-126. PubMed ID: 38047296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Split or slip - passive generation of monodisperse double emulsions with cores of varying viscosity in microfluidic tandem step emulsification system.
    Opalski AS; Makuch K; Derzsi L; Garstecki P
    RSC Adv; 2020 Jun; 10(39):23058-23065. PubMed ID: 35520343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A double-step emulsification device for direct generation of double emulsions.
    Lai YK; Opalski AS; Garstecki P; Derzsi L; Guzowski J
    Soft Matter; 2022 Aug; 18(33):6157-6166. PubMed ID: 35770691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Centrifugal step emulsification applied for absolute quantification of nucleic acids by digital droplet RPA.
    Schuler F; Schwemmer F; Trotter M; Wadle S; Zengerle R; von Stetten F; Paust N
    Lab Chip; 2015 Jul; 15(13):2759-66. PubMed ID: 25947077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas-assisted microfluidic step-emulsification for generating micron- and submicron-sized droplets.
    Huang B; Ge X; Rubinstein BY; Chen X; Wang L; Xie H; Leshansky AM; Li Z
    Microsyst Nanoeng; 2023; 9():86. PubMed ID: 37435566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hands-off preparation of monodisperse emulsion droplets using a poly(dimethylsiloxane) microfluidic chip for droplet digital PCR.
    Tanaka H; Yamamoto S; Nakamura A; Nakashoji Y; Okura N; Nakamoto N; Tsukagoshi K; Hashimoto M
    Anal Chem; 2015 Apr; 87(8):4134-43. PubMed ID: 25822401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monodisperse Micro-Droplet Generation in Microfluidic Channel with Asymmetric Cross-Sectional Shape.
    Cho Y; Kim J; Park J; Kim HS; Cho Y
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatile Tool for Droplet Generation in Standard Reaction Tubes by Centrifugal Step Emulsification.
    Schulz M; Probst S; Calabrese S; R Homann A; Borst N; Weiss M; von Stetten F; Zengerle R; Paust N
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32326221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting.
    Tan YC; Fisher JS; Lee AI; Cristini V; Lee AP
    Lab Chip; 2004 Aug; 4(4):292-8. PubMed ID: 15269794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic step-emulsification in axisymmetric geometry.
    Chakraborty I; Ricouvier J; Yazhgur P; Tabeling P; Leshansky AM
    Lab Chip; 2017 Oct; 17(21):3609-3620. PubMed ID: 28944810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices.
    Okushima S; Nisisako T; Torii T; Higuchi T
    Langmuir; 2004 Nov; 20(23):9905-8. PubMed ID: 15518471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A precise and accurate microfluidic droplet dilutor.
    Postek W; Kaminski TS; Garstecki P
    Analyst; 2017 Aug; 142(16):2901-2911. PubMed ID: 28676870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles.
    Nisisako T; Torii T
    Lab Chip; 2008 Feb; 8(2):287-93. PubMed ID: 18231668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.