BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28271165)

  • 1. Phenol degradation and heavy metal tolerance of Antarctic yeasts.
    Fernández PM; Martorell MM; Blaser MG; Ruberto LAM; de Figueroa LIC; Mac Cormack WP
    Extremophiles; 2017 May; 21(3):445-457. PubMed ID: 28271165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of phenol and phenol-related compounds by psychrophilic and cold-tolerant alpine yeasts.
    Bergauer P; Fonteyne PA; Nolard N; Schinner F; Margesin R
    Chemosphere; 2005 May; 59(7):909-18. PubMed ID: 15823324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal capture by autochthonous yeasts from a volcanic influenced environment of Patagonia.
    Russo G; Libkind D; Giraudo MR; Delgado OD
    J Basic Microbiol; 2016 Nov; 56(11):1203-1211. PubMed ID: 27427287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts.
    Margesin R; Gander S; Zacke G; Gounot AM; Schinner F
    Extremophiles; 2003 Dec; 7(6):451-8. PubMed ID: 12942349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts.
    Margesin R; Fonteyne PA; Redl B
    Res Microbiol; 2005; 156(1):68-75. PubMed ID: 15636749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Yeasts--biosorbents of heavy metals].
    Podgorskiĭ VS; Kasatkina TP; Lozovaia OG
    Mikrobiol Z; 2004; 66(1):91-103. PubMed ID: 15104060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioprospection of cold-adapted yeasts with biotechnological potential from Antarctica.
    Martorell MM; Ruberto LAM; Fernández PM; Castellanos de Figueroa LI; Mac Cormack WP
    J Basic Microbiol; 2017 Jun; 57(6):504-516. PubMed ID: 28272809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of phenol by hydrocarbon assimilating yeasts.
    Hofmann KH; Schauer F
    Antonie Van Leeuwenhoek; 1988; 54(2):179-88. PubMed ID: 3395111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination.
    Mikes J; Siglova M; Cejkova A; Masak J; Jirku V
    Water Sci Technol; 2005; 52(10-11):151-6. PubMed ID: 16459787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal tolerance of yeasts isolated from water, soil and plant environments.
    Vadkertiová R; Sláviková E
    J Basic Microbiol; 2006; 46(2):145-52. PubMed ID: 16598828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential.
    Buzzini P; Branda E; Goretti M; Turchetti B
    FEMS Microbiol Ecol; 2012 Nov; 82(2):217-41. PubMed ID: 22385361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyphenolic substrates and dyes degradation by yeasts from 25 de Mayo/King George Island (Antarctica).
    Rovati JI; Pajot HF; Ruberto L; Mac Cormack W; Figueroa LI
    Yeast; 2013 Nov; 30(11):459-70. PubMed ID: 24298603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromate removal by yeasts isolated from sediments of a tanning factory and a mine site in Argentina.
    Villegas LB; Fernández PM; Amoroso MJ; de Figueroa LI
    Biometals; 2008 Oct; 21(5):591-600. PubMed ID: 18528763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation of phenol by cold-tolerant bacteria isolated from alpine soils of Binaloud Mountains in Iran.
    Sepehr S; Shahnavaz B; Asoodeh A; Karrabi M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(4):367-379. PubMed ID: 30628541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metal tolerance in marine strains of Yarrowia lipolytica.
    Bankar A; Zinjarde S; Shinde M; Gopalghare G; Ravikumar A
    Extremophiles; 2018 Jul; 22(4):617-628. PubMed ID: 29594464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of heavy metals on bacterial growth parameters in degradation of phenol by an Antarctic bacterial consortium.
    Tengku-Mazuki TA; Darham S; Convey P; Shaharuddin NA; Zulkharnain A; Khalil KA; Zahri KNM; Subramaniam K; Merican F; Gomez-Fuentes C; Ahmad SA
    Braz J Microbiol; 2024 Mar; 55(1):629-637. PubMed ID: 38110706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From industrial sites to environmental applications with Cupriavidus metallidurans.
    Diels L; Van Roy S; Taghavi S; Van Houdt R
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):247-58. PubMed ID: 19582590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of phenol-degrading yeasts from an oil refinery wastewater in Brazil.
    Rocha LL; de Aguiar Cordeiro R; Cavalcante RM; do Nascimento RF; Martins SC; Santaella ST; Melo VM
    Mycopathologia; 2007 Oct; 164(4):183-8. PubMed ID: 17674140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of a phenol-degrading Rhodococcus sp. strain AQ5NOL 2 KCTC 11961BP.
    Arif NM; Ahmad SA; Syed MA; Shukor MY
    J Basic Microbiol; 2013 Jan; 53(1):9-19. PubMed ID: 22581645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Resistance of chemoorganotrophic bacteria isolated from Antarctic cliffs to toxic metals].
    Tashirev AB; Rokitko PV; Levishko AS; Romanovskaia VA; Tashireva AA
    Mikrobiol Z; 2012; 74(2):3-7. PubMed ID: 22686011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.