These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 28271285)
1. Theoretical investigation of pillar[4]quinone as a cathode active material for lithium-ion batteries. Huan L; Xie J; Chen M; Diao G; Zhao R; Zuo T J Mol Model; 2017 Apr; 23(4):105. PubMed ID: 28271285 [TBL] [Abstract][Full Text] [Related]
2. First-Principles Density Functional Theory Modeling of Li Binding: Thermodynamics and Redox Properties of Quinone Derivatives for Lithium-Ion Batteries. Kim KC; Liu T; Lee SW; Jang SS J Am Chem Soc; 2016 Feb; 138(7):2374-82. PubMed ID: 26824616 [TBL] [Abstract][Full Text] [Related]
3. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. Zhu Z; Hong M; Guo D; Shi J; Tao Z; Chen J J Am Chem Soc; 2014 Nov; 136(47):16461-4. PubMed ID: 25383544 [TBL] [Abstract][Full Text] [Related]
4. Theoretical study on lithiation mechanism of benzoquinone-based macrocyclic compounds as cathode for lithium-ion batteries. Zhao Q; Miao L; Ma M; Liu L; Chen J Phys Chem Chem Phys; 2019 Jun; 21(21):11004-11010. PubMed ID: 31089593 [TBL] [Abstract][Full Text] [Related]
5. A Microporous Covalent-Organic Framework with Abundant Accessible Carbonyl Groups for Lithium-Ion Batteries. Luo Z; Liu L; Ning J; Lei K; Lu Y; Li F; Chen J Angew Chem Int Ed Engl; 2018 Jul; 57(30):9443-9446. PubMed ID: 29863784 [TBL] [Abstract][Full Text] [Related]
6. Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity. Nokami T; Matsuo T; Inatomi Y; Hojo N; Tsukagoshi T; Yoshizawa H; Shimizu A; Kuramoto H; Komae K; Tsuyama H; Yoshida J J Am Chem Soc; 2012 Dec; 134(48):19694-700. PubMed ID: 23130634 [TBL] [Abstract][Full Text] [Related]
7. A Self-Polymerized Nitro-Substituted Conjugated Carbonyl Compound as High-Performance Cathode for Lithium-Organic Batteries. Li Q; Wang H; Wang HG; Si Z; Li C; Bai J ChemSusChem; 2020 May; 13(9):2449-2456. PubMed ID: 31867898 [TBL] [Abstract][Full Text] [Related]
8. Li2C2, a High-Capacity Cathode Material for Lithium Ion Batteries. Tian N; Gao Y; Li Y; Wang Z; Song X; Chen L Angew Chem Int Ed Engl; 2016 Jan; 55(2):644-8. PubMed ID: 26609636 [TBL] [Abstract][Full Text] [Related]
9. Evaluating the Free Energies of Solvation and Electronic Structures of Lithium-Ion Battery Electrolytes. Shakourian-Fard M; Kamath G; Sankaranarayanan SK Chemphyschem; 2016 Sep; 17(18):2916-30. PubMed ID: 27257715 [TBL] [Abstract][Full Text] [Related]
10. Mellitic Triimides Showing Three One-Electron Redox Reactions with Increased Redox Potential as New Electrode Materials for Li-Ion Batteries. Min DJ; Lee K; Park SY; Kwon JE ChemSusChem; 2020 May; 13(9):2303-2311. PubMed ID: 32109008 [TBL] [Abstract][Full Text] [Related]
11. First-Principles Study of Lithium Borocarbide as a Cathode Material for Rechargeable Li ion Batteries. Xu Q; Ban C; Dillon AC; Wei SH; Zhao Y J Phys Chem Lett; 2011 May; 2(10):1129-32. PubMed ID: 26295314 [TBL] [Abstract][Full Text] [Related]
12. A density functional theory study on the thermodynamic and dynamic properties of anthraquinone analogue cathode materials for rechargeable lithium ion batteries. Yang SJ; Qin XY; He R; Shen W; Li M; Zhao LB Phys Chem Chem Phys; 2017 May; 19(19):12480-12489. PubMed ID: 28470283 [TBL] [Abstract][Full Text] [Related]
13. Oxocarbon-functionalized graphene as a lithium-ion battery cathode: a first-principles investigation. Wang Z; Li S; Zhang Y; Xu H Phys Chem Chem Phys; 2018 Mar; 20(11):7447-7456. PubMed ID: 29488988 [TBL] [Abstract][Full Text] [Related]
14. A Sulfur Heterocyclic Quinone Cathode and a Multifunctional Binder for a High-Performance Rechargeable Lithium-Ion Battery. Ma T; Zhao Q; Wang J; Pan Z; Chen J Angew Chem Int Ed Engl; 2016 May; 55(22):6428-32. PubMed ID: 27080745 [TBL] [Abstract][Full Text] [Related]
15. Molecular Design of Phenanthrenequinone Derivatives as Organic Cathode Materials. Zhao LB; Gao ST; He R; Shen W; Li M ChemSusChem; 2018 Apr; 11(7):1215-1222. PubMed ID: 29380541 [TBL] [Abstract][Full Text] [Related]
16. Lithium Storage Mechanism: A Review of Perylene Diimide N-Substituted with a 1,2,4-Triazol-3-yl Ring for Organic Cathode Materials. Seong H; Nam W; Moon JH; Kim G; Jin Y; Yoo H; Jung T; Myung Y; Lee K; Choi J ACS Appl Mater Interfaces; 2023 Dec; 15(50):58451-58461. PubMed ID: 38051908 [TBL] [Abstract][Full Text] [Related]
17. Cyclohexanehexone with Ultrahigh Capacity as Cathode Materials for Lithium-Ion Batteries. Lu Y; Hou X; Miao L; Li L; Shi R; Liu L; Chen J Angew Chem Int Ed Engl; 2019 May; 58(21):7020-7024. PubMed ID: 30916877 [TBL] [Abstract][Full Text] [Related]
18. Li-Binding Thermodynamics and Redox Properties of BNOPS-Based Organic Compounds for Cathodes in Lithium-Ion Batteries. Lee DK; Go CY; Kim KC ACS Appl Mater Interfaces; 2019 Sep; 11(35):31972-31979. PubMed ID: 31393115 [TBL] [Abstract][Full Text] [Related]
19. Atomic Pt Promoted N-Doped Carbon as Novel Negative Electrode for Li-Ion Batteries. Li T; Yu D; Liu J; Wang F ACS Appl Mater Interfaces; 2019 Oct; 11(41):37559-37566. PubMed ID: 31547655 [TBL] [Abstract][Full Text] [Related]
20. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery. Qiu L; Shao Z; Wang D; Wang W; Wang F; Wang J Carbohydr Polym; 2014 Oct; 111():588-91. PubMed ID: 25037391 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]