These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 28271285)

  • 41. General approach for high-power li-ion batteries: multiscale lithographic patterning of electrodes.
    Choi S; Kim TH; Lee JI; Kim J; Song HK; Park S
    ChemSusChem; 2014 Dec; 7(12):3483-90. PubMed ID: 25333718
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A first principles study of spinel ZnFe
    Guo H; Zhang Y; Marschilok AC; Takeuchi KJ; Takeuchi ES; Liu P
    Phys Chem Chem Phys; 2017 Oct; 19(38):26322-26329. PubMed ID: 28936521
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The structure-electrochemical property relationship of quinone electrodes for lithium-ion batteries.
    Miao L; Liu L; Shang Z; Li Y; Lu Y; Cheng F; Chen J
    Phys Chem Chem Phys; 2018 May; 20(19):13478-13484. PubMed ID: 29726879
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Y-doped Li8ZrO6: A Li-Ion Battery Cathode Material with High Capacity.
    Huang S; Wilson BE; Wang B; Fang Y; Buffington K; Stein A; Truhlar DG
    J Am Chem Soc; 2015 Sep; 137(34):10992-1003. PubMed ID: 26264394
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CO₂ and O₂ evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study.
    Wang H; Rus E; Sakuraba T; Kikuchi J; Kiya Y; Abruña HD
    Anal Chem; 2014 Jul; 86(13):6197-201. PubMed ID: 24845246
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Theoretic calculation for understanding the oxidation process of 1,4-dimethoxybenzene-based compounds as redox shuttles for overcharge protection of lithium ion batteries.
    Li T; Xing L; Li W; Peng B; Xu M; Gu F; Hu S
    J Phys Chem A; 2011 May; 115(19):4988-94. PubMed ID: 21517049
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Study on novel functional materials carboxymethyl cellulose lithium (CMC-Li) improve high-performance lithium-ion battery.
    Qiu L; Shao Z; Xiang P; Wang D; Zhou Z; Wang F; Wang W; Wang J
    Carbohydr Polym; 2014 Sep; 110():121-7. PubMed ID: 24906737
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Single-Molecule Dye Organics with Multielectron Redox Processes as Cathode Materials for Lithium Secondary Batteries.
    Men F; Liu N; Lan Q; Zhao Y; Qin J; Song Z; Zhan H
    ChemSusChem; 2020 May; 13(9):2410-2418. PubMed ID: 32050057
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Covalent organic framework with high capacity for the lithium ion battery anode: insight into intercalation of Li from first-principles calculations.
    Fang L; Cao X; Cao Z
    J Phys Condens Matter; 2019 May; 31(20):205502. PubMed ID: 30780142
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries.
    Liu H; Bugnet M; Tessaro MZ; Harris KJ; Dunham MJ; Jiang M; Goward GR; Botton GA
    Phys Chem Chem Phys; 2016 Oct; 18(42):29064-29075. PubMed ID: 27711529
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries.
    Zeng X; Li J
    J Hazard Mater; 2014 Apr; 271():50-6. PubMed ID: 24607415
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Computational and Experimental Investigation of Ti Substitution in Li1(NixMnxCo1-2x-yTiy)O2 for Lithium Ion Batteries.
    Markus IM; Lin F; Kam KC; Asta M; Doeff MM
    J Phys Chem Lett; 2014 Nov; 5(21):3649-55. PubMed ID: 26278733
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interplay of cation and anion redox in Li
    Yao Z; Kim S; He J; Hegde VI; Wolverton C
    Sci Adv; 2018 May; 4(5):eaao6754. PubMed ID: 29795779
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Li-biphenyl-1,2-dimethoxyethane solution: calculation and its application.
    Liu N; Li H; Jiang J; Huang X; Chen L
    J Phys Chem B; 2006 Jun; 110(21):10341-7. PubMed ID: 16722737
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cost-Effective Biomass Carbon/Calix[4]Quinone Composites for Lithium Ion Batteries.
    Huang W; Zhang M; Cui H; Yan B; Liu Y; Zhang Q
    Chem Asian J; 2019 Dec; 14(23):4164-4168. PubMed ID: 31654601
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Facile Synthesis of Diazaanthraquinone Dimers as High-Capacity Organic Cathode Materials for Rechargeable Lithium Batteries.
    Zhang P; Gan X; Huang L; Wang J; Li M; Hu Z; Wang R; Yu T; Song Z
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):14929-14939. PubMed ID: 38483071
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular Engineering of Quinone-Based Nickel Complexes and Polymers for All-Organic Li-Ion Batteries.
    Danchovski Y; Rasheev H; Stoyanova R; Tadjer A
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296395
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries.
    Ng SH; Tran N; Bramnik KG; Hibst H; Novák P
    Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Patterned separator membranes with pillar surface microstructures for improved battery performance.
    Gonçalves R; Miranda D; Marques-Almeida T; Silva MM; Cardoso VF; Almeida AM; Costa CM; Lanceros-Méndez S
    J Colloid Interface Sci; 2021 Aug; 596():158-172. PubMed ID: 33839349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.