These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 28271330)
1. Protective and Heat Retention Effects of Thermo-sensitive Basement Membrane Extract (Matrigel) in Hepatic Radiofrequency Ablation in an Experimental Animal Study. Fu JJ; Wang S; Yang W; Gong W; Jiang AN; Yan K; Chen MH Cardiovasc Intervent Radiol; 2017 Jul; 40(7):1077-1085. PubMed ID: 28271330 [TBL] [Abstract][Full Text] [Related]
2. [Effect of thermo-sensitive Matrigel on minimization of thermal injury to the nearby structures in radiofrequency ablation of subcapsular hepatic tumors in a rat model]. Fu JJ; Wang S; Guan RH; Yang W; Yan K; Chen MH Zhonghua Yi Xue Za Zhi; 2016 Jan; 96(1):43-7. PubMed ID: 26792607 [TBL] [Abstract][Full Text] [Related]
3. Effect of artificial ascites on thermal injury to the diaphragm and stomach in radiofrequency ablation of the liver: experimental study with a porcine model. Lee EJ; Rhim H; Lim HK; Choi D; Lee WJ; Min KS AJR Am J Roentgenol; 2008 Jun; 190(6):1659-64. PubMed ID: 18492921 [TBL] [Abstract][Full Text] [Related]
5. Percutaneous radiofrequency ablation for hepatic tumors abutting the diaphragm: clinical assessment of the heat-sink effect of artificial ascites. Nam SY; Rhim H; Kang TW; Lee MW; Kim YS; Choi D; Lee WJ; Park Y; Chang I; Lim HK AJR Am J Roentgenol; 2010 Feb; 194(2):W227-31. PubMed ID: 20093579 [TBL] [Abstract][Full Text] [Related]
6. Radiofrequency ablation of the liver in a rabbit model: creation of artificial ascites to minimize collateral thermal injury to the diaphragm and stomach. Kim YS; Rhim H; Paik SS J Vasc Interv Radiol; 2006 Mar; 17(3):541-7. PubMed ID: 16567679 [TBL] [Abstract][Full Text] [Related]
7. Does artificial ascites induce the heat-sink phenomenon during percutaneous radiofrequency ablation of the hepatic subcapsular area?: an in vivo experimental study using a rabbit model. Kim YS; Rhim H; Choi D; Lim HK Korean J Radiol; 2009; 10(1):43-50. PubMed ID: 19182502 [TBL] [Abstract][Full Text] [Related]
8. Radiofrequency ablation of peripheral liver tumors: intraperitoneal 5% dextrose in water decreases postprocedural pain. Hinshaw JL; Laeseke PF; Winter TC; Kliewer MA; Fine JP; Lee FT AJR Am J Roentgenol; 2006 May; 186(5 Suppl):S306-10. PubMed ID: 16632692 [TBL] [Abstract][Full Text] [Related]
9. Thermo-sensitive hydrogel for preventing bowel injury in percutaneous renal radiofrequency ablation. Wang X; Zhao X; Lin T; Guo H Int Urol Nephrol; 2016 Oct; 48(10):1593-600. PubMed ID: 27394136 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the Heat Sink Effect After Transarterial Embolization When Performed in Combination with Thermal Ablation of the Liver in a Rabbit Model. Puza CJ; Wang Q; Kim CY Cardiovasc Intervent Radiol; 2018 Nov; 41(11):1773-1778. PubMed ID: 30039505 [TBL] [Abstract][Full Text] [Related]
11. [A comparison of the use of electrochemical treatment and radio frequency ablation in porcine liver]. Czymek R; Gebhard M; Lubienski A; Roblick U; Bruch HP; Hildebrand P Zentralbl Chir; 2011 Aug; 136(4):379-85. PubMed ID: 21766275 [TBL] [Abstract][Full Text] [Related]
12. Pathological effects of lung radiofrequency ablation that contribute to pneumothorax, using a porcine model. Izaaryene J; Cohen F; Souteyrand P; Rolland PH; Vidal V; Bartoli JM; Secq V; Gaubert JY Int J Hyperthermia; 2017 Nov; 33(7):713-716. PubMed ID: 28540798 [TBL] [Abstract][Full Text] [Related]
13. Simulating radiofrequency ablation of hepatocellular carcinomas proximal to bare area of liver. Dhiman M; Repaka R Minim Invasive Ther Allied Technol; 2023 Aug; 32(4):163-174. PubMed ID: 37029689 [TBL] [Abstract][Full Text] [Related]
14. Unintended thermal injuries from radiofrequency ablation: protection with 5% dextrose in water. Laeseke PF; Sampson LA; Brace CL; Winter TC; Fine JP; Lee FT AJR Am J Roentgenol; 2006 May; 186(5 Suppl):S249-54. PubMed ID: 16632684 [TBL] [Abstract][Full Text] [Related]
15. Heat sink effect on tumor ablation characteristics as observed in monopolar radiofrequency, bipolar radiofrequency, and microwave, using ex vivo calf liver model. Pillai K; Akhter J; Chua TC; Shehata M; Alzahrani N; Al-Alem I; Morris DL Medicine (Baltimore); 2015 Mar; 94(9):e580. PubMed ID: 25738477 [TBL] [Abstract][Full Text] [Related]
16. Heat transfer within hydrodissection fluids: An analysis of thermal conduction and convection using liquid and gel materials. Johnson A; Brace C Int J Hyperthermia; 2015; 31(5):551-9. PubMed ID: 25960147 [TBL] [Abstract][Full Text] [Related]
17. Heat sink phenomenon of bipolar and monopolar radiofrequency ablation observed using polypropylene tubes for vessel simulation. Al-Alem I; Pillai K; Akhter J; Chua TC; Morris DL Surg Innov; 2014 Jun; 21(3):269-76. PubMed ID: 24132470 [TBL] [Abstract][Full Text] [Related]
18. Optimal conditions for "heat-conduct effect" in liver tissue during radiofrequency ablation. Jiang K; Su M; Liu Y; Zhao X; Liu J; Zhang W; Wang J; Dong J; Huang Z Panminerva Med; 2013 Sep; 55(3):297-302. PubMed ID: 24088804 [TBL] [Abstract][Full Text] [Related]
19. Radiofrequency Ablation with an Internally Cooled Monopolar Directional Electrode: Ex Vivo and in Vivo Experimental Studies in the Liver. Yu MH; Lee JY; Jun SR; Kim KW; Kim SH; Han JK; Choi BI Radiology; 2016 Feb; 278(2):395-404. PubMed ID: 26172531 [TBL] [Abstract][Full Text] [Related]
20. Hepatic Thermal Ablation: Effect of Device and Heating Parameters on Local Tissue Reactions and Distant Tumor Growth. Velez E; Goldberg SN; Kumar G; Wang Y; Gourevitch S; Sosna J; Moon T; Brace CL; Ahmed M Radiology; 2016 Dec; 281(3):782-792. PubMed ID: 27409564 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]